
Getting Groovy in an SOA
Grandeur

Study
Projectgroup Grandeur
Date January 21, 2009
School Hogeschool van Arnhem en Nijmegen
Training Informatie Communicatie Acedemie
Minor Enterprise Application Development
Subject Getting Groovy in an SOA
Supervisor Sander Leer
Version 1.3

Getting Groovy in an SOA

Summary
This paper is aimed at answering the following question:

'What are the characteristics of Groovy (and Grails) and what impact do they have for an implementation in an SOA

within enterprise applications?'

Groovy is a dynamic language and utilizes the Java Virtual Machine. Its dynamic nature lies in the ability to alter its

classes at runtime, thus allowing for constant change. Due to its foundation in Java, it can cooperate with and enrich the

existing Java libraries.

One of the more important features that Groovy provides, is the Meta-Object Protocol, which allows Groovy to perform

its dynamic capabilities. In essence, each object has an accompanying Meta-Object which contains all properties in the

form of a Map, thus allowing it to scale at runtime as needed.

When using Groovy for constructing webservices, some additional modules can be used. When using SOAP as the

desired transport mechanism, the GroovyWS-module provides functionality that abstracts all of the low level transport

operations through a simple interface. However, it is still in development and support is therefore minimal.

Furthermore, only a very small part of the WS-Security stack is implemented which minimizes the developers choice for

securing the webservices.

For RESTful webservices, Groovy's webframework Grails can be used. It has full support for all of the HTTP-request

methods and provides url mapping. For exposing the SOA to its target audience, the Grails framework offers a quick

start for developing a web interface that can interact with the SOA. Scaffolding allows Grails to generate both

controllers and views based on the domain classes in the model, enabling rapid development. By default, all domain

classes are persisted to a datastore through Grails Object Relational Mapping.

We believe that Groovy is mature enough to be used in a production environment, however Groovy's modules do not

provide all needed functionality for SOA development, and therefor Java frameworks are still required.

2 / 74

Getting Groovy in an SOA

Table of contents
 1 Introduction..5

 1.1 Objective... 7

 1.2 Research Questions... 8

 2 Groovy...9

 2.1 What are the characteristics of Groovy?...12
 2.1.1 Dynamic Language... 12

 2.1.2 Groovy Development Kit... 12

 2.1.3 Imports.. 13

 2.1.4 Semicolons.. 13

 2.1.5 Data type declaration.. 13

 2.1.6 Groovy String... 14

 2.1.7 Embedded quotes.. 15

 2.1.8 Heredocs... 15

 2.1.9 Collections.. 16

 2.1.10 Declaring Classes... 16

 2.1.11 Return Statements..17

 2.1.12 Checking NULL value.. 17

 2.1.13 Boolean.. 18

 2.1.14 Operator overloading..19

 2.1.15 Parentheses... 19

 2.1.16 Closures and blocks...19

 2.1.17 Loops... 21

 2.1.18 Exception handling..22

 2.1.19 Interfaces... 23

 2.1.20 Annotations.. 23

 2.1.21 Testing... 23

 2.1.22 Working with databases... 24

 2.2 Meta Object Protocol... 28
 2.2.1 Interceptable... 29

 2.2.2 Categories... 30

 2.2.3 Expando.. 30

 3 Webservices in Groovy... 31

 3.1 Creating, manipulating, validating and parsing XML...32

 3.2 SOAP-based webservices... 35
 3.2.1 GroovySOAP.. 35

 3.2.2 GroovyWS...37

 3.3 RESTful webservices... 39

 3.4 Securing webservices.. 42

 4 Grails... 44

 4.1 Scaffolding.. 46
 4.1.1 What is Scaffolding?.. 46

 4.1.2 Scaffolding in Grails.. 46

 4.2 GORM... 48
 4.2.1 Using GORM with legacy database schemas.. 49

 4.3 REST in Grails.. 52
 4.3.1 How to create a REST environment in Grails..52

 4.3.2 Getting it to work...53

 5 Conclusion.. 55

 5.1 GDK... 56

 5.2 Groovy in a SOA..57

 5.3 Grails... 57

 6 Recommendations... 59

 7 Bibliography... 61

 8 Glossary...64

 9 Appendices... 71

 9.1 Contacts Schema.. 72

 9.2 Address Controller.. 72

 9.3 RESTful Webpage.. 74

3 / 74

Getting Groovy in an SOA

Foreword
The world of IT is a constant revolving cycle where new and old ideas are used into ever emerging technologies, where

some fnd a silent end and others fnd great success. Java was one of those success stories, and has gained a large

community over time, supplying it with numerous frameworks that enchant its functionality and strength, making it

one of the most common programming languages in use these days.

Java has also inspired people to develop alternatives, modifying and replacing ideas of Java and other languages as they

see ft, creating the new generation of programming languages. One of these languages is Groovy. An interesting fact

about Groovy, that might make it more interesting then other fresh and emerging languages, is that Groovy code

compiles to Java byte code. This, and the rather intriguing name were enough for us to use it as a research subject.

The result of this research is a paper of approximately ffty pages, in the form of the document you are reading right

now. But before we end this foreword and start writing about the core questions that have driven our research, there

are a few people we would would like to thank for their contribution and support through the entire project:

• Rody Middelkoop, lecturer at the HAN

• Sander Leer, supervisor and lecturer at the HAN

• Peter Schuszler, lecturer at the HAN

• Paul Bakker, trainer/consultant at Info Support

We believe to have written a decent paper that will answer a few important questions about Groovy, and show you how

it can contribute to faster and more fun development along the way. We hope our readers will feel the same, give us

feedback if they desire, and might even introduce a bit a Groovyness in their everyday life.

Best regards,

Grandeur

4 / 74

Getting Groovy in an SOA

 1 Introduction

1
Introduction

“ Personal beauty is a greater
recommendation than any letter
of introduction. “

- Aristotle

Introduction 5 / 74

Getting Groovy in an SOA

This study is the result of fve months of research we have done on the young programming language called Groovy.

The research has been performed by a project group called “Grandeur”. This group consists of the following members:

• Youssef El Messaoudi

• Gaya Kessler

• Marco Kuiper

• Jaap Mengers

• Bart van Zeeland

Subject

This research is aimed at the programming language Groovy, a dynamic language that works on top of the Java Virtual

Machine. Groovy, developed in 2003 by James Strachan and Bob McWhirter [28], is a language that is very similar to

languages like Ruby, Smalltalk, Python and Perl.

One of the aspects that this research is aimed at, is the usage of Groovy in an SOA. In this context, the position of

Groovy is investigated as a service provider and consumer.

Other aspects that will be covered, are the characteristics of Groovy; the dynamic nature of the language and remarkable

syntax that makes Groovy unique.

Finally, the Grails-framework will be covered. This framework helps developers build web applications based on

Groovy's variant of the Java Server Pages.

Boundaries

Covering all aspects of Groovy, SOA, dynamic languages, Java and others, would be beyond the scope of this project .

Therefore, the following boundaries are set:

• This study focusses solely on Groovy. Although some comparisons are made with Java – after all Groovy runs

on the JVM – the emphasis is on Groovy. Other programming languages are outside the scope of this research.

• Groovy can provide a solution for several software problems. This study is only targeted at using Groovy as a

software solution inside an SOA in the form of a webservice.

• There are several modules available for Groovy. To support the main question of the research, we'll only cover

the following modules for Groovy:

◦ Groovy SOAP

◦ GroovyWS

◦ GSP

◦ Grails

◦ GORM

Expected knowledge

Readers are expected to have the following knowledge before they will be able to grasp the covered subjects.

• A general understanding of the SOA paradigm.

• Basic knowledge of Java.

Introduction 6 / 74

Getting Groovy in an SOA

Problem Defnition

This research is aimed at Groovy and its role in an enterprise environment between large and established platforms like

Java and .NET. Because of Groovy's relative young age, not much experience is gathered about Groovy in large,

enterprise-wide SOA's.

 1.1 Objective

The goal of this research is to investigate whether Groovy and Grails can be used as alternatives for common platform

like Java and .NET [29] inside an enterprise environment..

This objective came about since Groovy is a fairly new language. Languages like Java and .NET have already proven

themselves that they can be used inside a SOA, but does this count for Groovy (Figure 1: A SOA. Does Groovy ft in this

picture?)?

Objective 7 / 74

Figure 1: A SOA. Does Groovy ft in this picture?

Getting Groovy in an SOA

 1.2 Research Questions

With this objective in mind, we can conclude the following research question:

'What are the characteristics of Groovy (and Grails) and what impact do they have for an implementation in an SOA

within enterprise applications?'

There are separate questions made to support the main question to come to an accurate answer.

1. What is Groovy?

1. What are the characteristics of Groovy?

2. What is the MOP (Meta Object Protocol)?

1. Which mechanisms does Groovy provide for communication with web services?

3. How does Groovy handle XML documents?

4. Which mechanisms does Groovy provide for SOAP-based services?

5. Which mechanisms does Groovy provide for RESTful services?

2. Which features does Groovy provide for securing webservices?

3. Which possibilities does Groovy provide as a server side technology to build web applications?

All of the answers to the questions above can be found in this document.

Research Questions 8 / 74

Getting Groovy in an SOA

 2 Groovy

2
Groovy

“ Any fool can write code that a
computer can understand.
Good programmers write code
that humans can understand. “

- Martin Fowler

Groovy 9 / 74

Getting Groovy in an SOA

“ Groovy...

• is an agile and dynamic language for the Java Virtual Machine

• builds upon the strengths of Java but has additional power features inspired by languages

like Python, Ruby and Smalltalk

• makes modern programming features available to Java developers with almost-zero

learning curve

• supports Domain-Specifc Languages and other compact syntax so your code becomes

easy to read and maintain

• makes writing shell and build scripts easy with its powerful processing primitives, OO

abilities and an Ant DSL

• increases developer productivity by reducing scaffolding code when developing web, GUI,

database or console applications

• simplifes testing by supporting unit testing and mocking out-of-the-box

• seamlessly integrates with all existing Java objects and libraries

• compiles straight to Java bytecode so you can use it anywhere you can use Java

[Source: http://groovy.codehaus.org/] “

Groovy is an object-oriented programming language for the Java Platform [8] (Figure 3: The Java Platform), that

appeared in 2003. James Strachan and Bob McWhirter were the frst developers in this program. The frst “1.0” version

of Groovy was released on January 2, 2007. Guillaume Laforge is the current project manager [27].

Groovy 10 / 74

Figure 2: The Groovy Logo

Getting Groovy in an SOA

Groovy uses a Java-like syntax which is dynamically compiled to Java byte code [7]. For this reason, Groovy can

seamlessly work together with Java code and Java libraries (Figure 4: Java Platform incl. Groovy). This combination makes

the use of Groovy really powerful; all Java (.java) fles can be converted to Groovy fles (.groovy) and the application

should still compile and work [27]. Groovy has some unique, powerful features that can now be used in the code.

This also works the other way around; when an application needs functionality that can't be achieved with the existing

Groovy libraries, the developer can still write Java code to achieve the goal.

“ Groovy is like a super version of Java. It can leverage Java's enterprise capabilities but also has cool

productivity features like closures, builders and dynamic typing. If you are a developer, tester or

script guru, you have to love Groovy.

[Source: http://groovy.codehaus.org/] “

11 / 74

Figure 3: The Java Platform

Figure 4: Java Platform incl. Groovy

Getting Groovy in an SOA

 2.1 What are the characteristics of Groovy?

 2.1.1 Dynamic Language

There are a few aspects of a programming language that highly infuence what is possible within the language. One of

these is on what level the language functions. A language like C talks directly to the OS [30], and hereby is capable of

things impossible in Java, like directly accessing the networking sockets or reading and manipulating the packages that

are send over the network. This is something that can't be done in a language like, for example, Groovy.

Groovy, on the other end, runs on a VM [4] that does the memory allocation and garbage collection for you. These are

things that are not readily available in C and are usually done manual or by adding middle-ware. Another aspect is

whether the language is dynamic or static. C is a prime example of a static language [37]: it doesn't allow runtime

manipulation of the code. Groovy, on the other hand, does allow this [38] , giving the programmer more fexibility.

But defning what makes a language like Groovy dynamic is more then just saying that it allows such runtime mutation

of it's code, although this is one of the most important features [31]. Other features may involve;

• Dynamic typing [31]

• Late binding [31]

• Eval support [32]

Languages that support these features are not always dynamic though, many static languages are working to provide

the developer with more and more dynamic features [39] , although they are are still static at their core. Defning a

static language from a dynamic one gets more diffcult this way [31] , but the most fundamental feature (allowing the

manipulation of code while executing) is still limited to truly dynamic languages.

One of the best reasons to use a dynamic language over a static one is its fexibility [40] . Because the code is able to

change at runtime, it can adapt itself when needed. Calls to non-existing function can be used to generate these function

at runtime and actually return a useful result instead of a cryptic error. This same kind of functionality can be used to

mock almost anything [41], saving the developer from having to type them all out and thus increasing their

development speed. Developing in a dynamic language is usually faster as well. Because the syntax is shorter and more

expressive, a function in a dynamic language is usually shorter then one in a static language, shaving of development

time.

Dynamic programming languages have downsides as well: all of the compiling has to be done at runtime, and this takes

it's toll on the speed of the software [30]. Normal algorithms to speed up this compiling process can't be applied either,

since the code can be changed dynamically at almost anytime. This decreases the overall speed as well. The dynamic

nature of a language also makes it more diffcult for IDE's to provide decent support to the developer[31], making a

good IDE harder to come by.

Since both of the most common language platforms today (Java and .NET) are moving towards becoming more

dynamic, the downsides that most dynamic languages know today, will probably fade, making dynamic languages a

more attractive choice. An increase of processing power in consumer grade computers and a demand for faster

development will also contribute to a higher rate of acceptation within the software industry, creating a larger platform

for dynamic languages themselves.

 2.1.2 Groovy Development Kit

Groovy extends the JDK with extra methods and closure support. Basically, Groovy still uses the good old Java classes

like java.util.ArrayList. These classes have more convenient methods.

For example: Java has a java.util.ArrayList class. If this arraylist contains strings which have to be joined, some sort of

loop would have to be written and the result would have to be build up by hand. Groovy however, adds a join-method

to the ArrayList, which can do this automatically.

Groovy Development Kit 12 / 74

Getting Groovy in an SOA

 2.1.3 Imports

Groovy automatically imports a series of packages and classes that are often used, so that they can be used immediately

without the need to be implicitly imported [3] . These include:

• groovy.lang.*;

• groovy.util.*;

• java.lang.*;

• java.util.*;

• java.net.*;

• java.io.;

• java.Math.BigInteger;

• java.Math.BigDecimal;

Furthermore, Groovy makes a number of methods available in each Object, so that they can be called without the need

to use their fully qualifed name. The one most common used is 'System.out.print', which can be called with

'print' throughout the entire code.

 2.1.4 Semicolons

The use of semicolons (;) in Groovy is completely optional [3]. The only time a semicolon has to be used, is when

multiple function calls are placed on the same line.

print ("Hello")
print (" world!")
// Will print "Hello world!"

print ("Hello"); print (" world!");
// Will print "Hello world!"

 2.1.5 Data type declaration

When creating an object, it's type doesn't have to be defned explicitly. By using the def-keyword, Groovy will

automatically detect what object type has to be used.

/* Used in scripts */
word = "Hello World!"
print word.class
// class java.lang.String

/* Used in compiled classes */
def number = 10
print number.class
// class java.lang.Integer

Although optional, Groovy still enables object types to be declared explicitly. This might be useful in situations where

only one data type is allowed.

Data type declaration 13 / 74

Getting Groovy in an SOA

In the following example, the method addAmount is called. The parameter it expects is of type int, since the method

performs a calculation based on the input and returns the result.

def addAmount(int deposit)
{

return 100 + deposit
}

print addAmount(20)
// 120
print addAmount("String")
// addAmount() is applicable for argument types:
// (java.lang.String) values: {"String"}

If def deposit would be used in this context, the last return value would be 100String with the class

java.lang.String. When an action is performed on a String and an Integer, the String is always used. Groovy

doesn’t look at the order the variables are given.

number = 10
print number.class
// class java.lang.Integer

string = "Hello World!"
print string.class
// class java.lang.String

print number + string
// 10Hello World!
print string + number
// Hello World!10

 2.1.6 Groovy String

The Groovy String (Also called “GString”) allows for any type of logic to be integrated in the String defnition [5] . This

can be done with the dollar symbol ($) and (optional) braces ({ }). The difference between a String and a GString is

automatically recognized by Groovy.

word = "Hello World!"
print word.class
// class java.lang.String

name = "World"
gstring = "Hello ${name}!"
print gstring.class
// class org.codehaus.groovy.runtime.GStringImpl

Groovy String 14 / 74

Getting Groovy in an SOA

The dollar sign can be escaped with a backslash, to use it's String representation when printing a currency. In

combination with Heredocs – further explained in chapter 2.1.8 – a GString can be very powerful and useful for

programming.

honorific = "Mr. "
name = "Foo"
currentamount = 100.00
deposit = 20.00
gstring = """Hello ${honorific + name},
Amount of money you had: € $currentamount
Your deposit is: € $deposit
Your current amount is: € ${currentamount + deposit}"""

print gstring

/* Above will output:
Hello Mr. Foo,
Amount of money you had: € 100.00
Your deposit is: € 20.00
Your current amount is: € 120.00 */

As shown in the example, curly braces are only needed when an operation is performed as part of the result.

 2.1.7 Embedded quotes

Groovy has a nice way of working with Strings. In Java, a single quote would represent the primitive type char. In

Groovy, anything that is surrounded by either single or double quotes, is converted to a String [8].

This is very useful when working with Strings that contain quotes. As this example will show, Strings with doubles

quotes in it can be surrounded with single quotes en vice versa. To escape a quote, a backslash is used.

embed_singlequote = "Hello 'World'"
print embed_singlequote
// Hello 'World'

embed_doublequote = 'Hello "World"'
print embed_doublequote
// Hello "World"

embed_escapequote = "Hello \"World\""
print embed_escapequote
// Hello "World"

Escaping a quote is not necessary when heredocs are used.

 2.1.8 Heredocs

Heredocs present an easy way of declaring a multiline String in an easy way [3] . Furthermore, it can contain both

single and double quotes, which don't need to be escaped.

A Heredoc is declared by surrounding a String-value with three double quotes on either side.

Heredoc = """"""
print heredoc
//

Heredocs 15 / 74

Getting Groovy in an SOA

 2.1.9 Collections

Groovy acknowledges three different types of collections [5]. The frst two, Lists and Maps, are no different from the

ones used in Java. Lists use a null-based index to retrieve items, whereas Maps use a unique key to fnd an item. Ranges

however, are more or less unique to dynamic languages.

A simple example of a list in Groovy is:

def roman = ['', 'I', 'II', 'III', 'IV', 'V', 'VI', 'VII']

The frst entry being zero in Roman, which is the word 'nulla' and doesn't have a notation.

A map is created by assigning values to a corresponding key, like such:

def http = [
100 : 'CONTINUE',
200 : 'OK',
400 : 'BAD REQUEST'

]

Although ranges don’t appear in the standard Java libraries, most programmers have an intuitive idea of what a range

is. Effectively, a range defnes a start and an end point, with a notion of how to move from the start to the end point.

Groovy provides literals to support for ranges, along with other language features such as the for statement, which

understands ranges.

Declaring a range is easy:

def x = 1..10

 2.1.10 Declaring Classes

Classes are the cornerstone of object-oriented programming, because they defne the blueprint from which objects are

drawn.

The code below contains a simple Groovy class named Book, which has an instance variable title, a constructor that sets

the title, and a getter method for the title.

By default, all methods are public and therefore access modifers are excluded.

class Book {
 private String title

 Book (String theTitle) {
 title = theTitle
 }

 String getTitle(){
 return this.title
 }
}

def HarryPotter = new Book("Harry Potter 11")

print "The name of the book: " + HarryPotter.getTitle();

Declaring Classes 16 / 74

Getting Groovy in an SOA

 2.1.11 Return Statements

The last line of a method in Groovy is automatically the return statement [3]. For this reason, an explicit return

statement can be left out.

def getFoobar()
{

"Foobar"
}

print getFoobar()
// Foobar

To return a value that is not on the last line, the return statement has to be declared explicitly.

def getGreet(String name)
{

if(name != null)
return "Hello $name!"

else
return "Hello anonymous!"

}

print getGreet("World")
// Hello World!
print getGreet()
// Hello anonymous!

In the example above you’ll see one of the usages of the GString, which was explained in chapter 2.1.6. Checking for the

null value in Groovy can be much simpler as coded in the example, as you’ll can see in the next chapter.

 2.1.12 Checking NULL value

Null-checking is a tedious, yet necessary operation, especially when a long chain of get-methods is used to retrieve a

variable deep inside of an object-hierarchy and each of them can be null.

Groovy simplifes this process by providing a syntax where null-checking can be done automatically when a property is

referenced or a method call is made. It does this by using a question mark after each potential null-value, like such:

string = "Hello World!"
print string.size()
// 12

empty = null
print empty.size()
// java.lang.NullPointerException:
// Cannot invoke method size() on null object

print empty?.size()
// null

Checking NULL value 17 / 74

Getting Groovy in an SOA

When encountering a question mark, Groovy will check if the preceding variable is null. If so, it will end the operation

and skip to the next statement. If not, it will continue execution on the current operation, where it might encounter

another question mark, after which the process will be repeated.

class Person
{

def bankaccount = new Bankaccount()
}

class Bankaccount
{

def getCurrentamount()
{

100.00
}

}

person = new Person()
// Java: if (person != null && person.bankaccount != null

// && person.bankaccount.getCurrentamount() != null)
println person?.bankaccount?.currentamount

 2.1.13 Boolean

Every object in Groovy has a boolean representation, which value depends on it's content and type. A String for

instance, will return true if populated and false if empty. This allows for quick “truth”-checking, and reduces the

amount of code involved.

// Strings
if ("Hello") // True: String is not empty
if ("") // False: String is empty

// Integers
if (1) // True: All non-0 (zero) values are true
if (-1)
if (0) // False: 0 (zero) values are false

// null
if(!null) // True: All non null values are true
if(null) // False: All null values are false

// Lists
list = ["value 1","value 2","value 3"]
if (list) // True: Array length is greater than 0 (zero)
list = []
if (list) // False: Array length is less than 0 (zero)

// Maps
person = [firstname:"Foo",lastname:"Bar"]
if (person) // True: Map is populated
person = [:]
if (person) // False: Map has no population

Boolean 18 / 74

Getting Groovy in an SOA

 2.1.14 Operator overloading

Operator overloading allows the default use of operators to be overridden to enable a more intuitive approach for

common methods [27]. The way Groovy implements this, can be seen in the following table [3].

a == b or a != b - a.equals(b)
a + b - a.plus(b)
a - b - a.minus(b)
a * b - a.multiply(b)
a / b - a.div(b)
a % b - a.mod(b)
a++ or ++a - a.next()
a-- or --a - a.previous()
a & b - a.and(b)
a | b - a.or(b)
a[b] - a.getAt(b)
a[b] = c - a.putAt(b, c)
a << b - a.leftShift(b)
a >> b - a.rightShift(b)
a < b or a > b
a <= b or a >= b - a.compareTo(b)

Groovy classes that implement any of these methods, automatically enable the use of the corresponding operator,

without the need to implement an interface like in Java.

 2.1.15 Parentheses

In Groovy's effort to make development simpler and quicker, it allows parentheses in method calls to be omitted,

provided that the method expects arguments [3]. When a method call is made without both parentheses and

arguments, Groovy interprets this as a reference to a property, and will throw an exception if this property is non-

existent.

def present(name)
{
 println "Hi! My name is " + name + ", nice to meet you."
}

present 'G. R. Oovy'
// Will print "Hi! My name is G. R. Oovy, nice to meet you."

present 'G. R. Oovy'.toLowerCase()
// Will print "Hi! My name is g. r. oovy, nice to meet you."

present 'G. R. Oovy'.toLowerCase
// groovy.lang.MissingPropertyException: No such property: toLowerCase

 2.1.16 Closures and blocks

One of the most interesting aspects of Groovy's dynamic features, is the closure [8]. A closure can be defned as a

function wrapped in a variable, thus allowing it to be used as an argument in a method-call.

Closures can access variables that are defned in the same scope in which the closure is defned.

def name = "" //initialize variable
def printName = { println "The string in the name variable is " + name } //define method
name = "Youssef" //set string Youssef in variable name
printName() //result: The string in the name variable is Youssef
name = "Gaya" //set string Gaya in variable name
printName() //result: The string in the name variable is Gaya

In order for a closure to use variables that are outside it's scope, arguments can be passed to it. If only one argument is

used, it is automatically and implicitly named 'it' and can be referenced as such.

Closures and blocks 19 / 74

Getting Groovy in an SOA

def name = "" //initialize variable
def printName = { println "The string in the name variable is " + it } //define method
name = "Youssef" //set string Youssef in variable name
printName(name) //result: The string in the name variable is Youssef
name = "Gaya" //set string Gaya in variable name
printName(name) //result: The string in the name variable is Gaya

When more infuence on the naming of the arguments is preferred, or multiple arguments are used, these must be

added to the closure, preceding the closure's body and separated with '->'.

def printName = { nameToPrint -> println "The string in the name variable is " + nameToPrint }

Groovy's closures are ordinary POGO's, and can therefore be nested, as this example will show.

def startTimer() {
def initialDate = new java.util.Date()
return {

println "${initialDate} - ${new java.util.Date()} : Elapsed time $
{System.currentTimeMillis() - initialDate.time}"

}
}
def timer = startTimer()
timer()

Although a closure is very powerful as is, Groovy enriched it to allow "currying" [3]. With this feature, arguments can

be bound to closure calls, to prevent redundant code when repeated calls are made. Because this is quite an abstract

concept, an example will clarify it's goal and use.

This closure let's a person print a message to the console.

def saySomething = {name, message ->
 println "${name} says: '$message'"
}

saySomething "Simon", "Hello!"
//Simon says: 'Hello!'

Because a certain Simon wants to say multiple things, and doesn't want to repeat his name every time he does that, the

closure is curried.

def simonSays = saySomething.curry("Simon")
simonSays "How are you?"
simonSays "Well, goodbye!"
//Simon says: 'How are you?'
//Simon says: 'Well, goodbye!'

Closures and blocks 20 / 74

Getting Groovy in an SOA

Excess arguments

When a closure requires a variable amount of arguments, some sort of list would have to be used to be able to achieve

this. Groovy enables the use of an argument of type Object[], which is a list that can literally contain every type of object

imaginable. If this list is added as the last argument, Groovy allows the contents of the list to be added to the

functioncall as if they were plain arguments and part of the closures signature.

def replace = {
 format, Object[] args ->
 args.eachWithIndex{obj, i ->
 format = format.replaceAll("(\\{${i}\\})", obj)
 }
 format
}

println replace ("SELECT {0} FROM {1} WHERE {2} = '{3}' ORDER BY {0} ASC", "username", "Users",
"lastname", "Laforge");
//SELECT username FROM Users WHERE lastname = 'Laforge' ORDER BY username ASC

The closure in the example above accepts two arguments; the format of the String that has to be returned and the words

that have to be replaced in the desired places. After interpreting the frst argument, Groovy detects that the excess

arguments are part of the list that is defned as the second and last argument. This list is then iterated over in the

closures body, replacing the numbered placeholders with the desired text.

 2.1.17 Loops

Because of Groovy's origin in Java, it natively supports both the for- and while-loop. Groovy's for-each loops though,

have a slight difference in syntax when compared with there Java equivalents [4] .

A Java for-each loop looks like this:

for (variable : iterable) { body }

Groovy's counterpart however, uses the keyword 'in' instead of Java's colon.

for (variable in iterable) { body }

As can be seen in chapter 2.1.9, Groovy has some special capabilities for collections, among which the range. Groovy

provides some extra looping techniques that can be used in collaboration with these.

The each-method can be used on collections, and executes a given closure for each of the items in the list [8].

('Z'..'A').each{print it}
//ZYXWVUTSRQPONMLKJIHGFEDCBA

The eachWithIndex does essentially the same, but keeps an numbered index that can be accessed from within the

closure.

('A'..'Z').eachWithIndex{obj, it -> println "${it+1}. ${obj}"}
/**
 * 1. A
 * 2. B
 * …
 * 25. Y
 * 26. Z
 */

Loops 21 / 74

Getting Groovy in an SOA

 2.1.18 Exception handling

Groovy lets the programmer decide to catch the exception or not.

In the following example, the developer tries to open and read the contents of a fle. He does not need to surround the

method with a try and catch block, when he knows that the fle exists. Groovy gives the programmer control over the

exceptions, so he choose to throw one but he does not need to. Java would not compile the code because it expects an

try and catch block that throws the exception FileNotFoundException.

// checked and unchecked exceptions
def readerWithoutException = new FileReader("/home/wepkey.txt")println 'Wepkey is: ' +
readerWithoutException.getText()
/**

result: Wepkey is: D97951A2AEF7A4F927652F573A
**/
try{

readerInException = new FileReader("/home/hax.txt")
println 'Wepkey is: ' + readerInException.getText()

}
catch(FileNotFoundException e){
 println 'Could not find the file'
}
/**
 result: Could not find the file
**/

The example above shows two ways of opening a fle: With and without a try and catch block. When the developers

knows that a fle exists – As shown in the frst example above – he doesn't need to surround it with a try and catch.

Like stated earlier, the developer can choose whether he wants to catch the exception or not – This happens in the

second example above.

Sometimes, code needs to catch more than one exception. Groovy allows the developer to catch all exceptions in one

catch, instead of writing a catch statement for each try.

try
{

// openFile does not exist
openFile("document.txt")

// URL is formatted wrong
URL url = new URL("http:/www.google.com/");
InputStream stream = url.openStream();

}
catch(ex)
{

// Catch all kinds of exeptions from the try
println "ERROR: " + ex

}
// openFile throws: groovy.lang.MissingMethodException
// URL throws: java.lang.IllegalArgumentException

Note that the code above only throws one exception: The function openFile does not exist so it directly throws an

exception. If it existed, another exception would be thrown since the URL is formatted wrong. The catch would show

the exception: This is the same catch as the one from openFile.

Method Missing

An exception with the type “MissingMethodException” was thrown in the previous example. As the name suggest, it

means that Groovy can't fnd a method with that name. Since Groovy is a dynamic language, the developer does not get

the error while writing the code, but only when running it.

In Groovy you can implement the methodMissing() method. This method allows the developer to dynamically

defne what to do when MissingMethodException is thrown.

The missingMethod method accepts 2 arguments. The frst is the name of the called method (String). The second

argument is an Object[], so the programmer can pass as many variables as he want.

Exception handling 22 / 74

Getting Groovy in an SOA

 2.1.19 Interfaces

In Groovy you can implement an interface just like in Java. However, this functionality comes with a problem: When the

developer tries to use a Groovy class inside an interface.

The reason for this is that Java uses the javac to translate Java code to byte code. So when javac compiles the interface

it will search for the classfles of the class that is defned in the interface, in this case a class written in Groovy. If the

javac can't fnd the class it will search for the source code and try to compile it to byte code.

In this case it can not fnd the source fle of the class because it will look for the <classname>.java fle. But the class is

written in Groovy so it ends in .groovy. Java will throw an exception after this.

The solution is to compile the Groovy code frst and then let javac do his work. Javac will succeed this time, because it

can fnd the class fles which it could not before.

Frame

When adding an eventhandler to a frame element, the developer can create an anonymous inner class. In the Java

example below, the code implements ActionListener and all the methods that are defned in this interface. Programmers

do not always need these methods.

Groovy gives them the freedom to only call the functions that they are going to use. Defne an anonymous closure with

what Groovy has to do when the event fres and add the as <listener> to the call.

// Java
button.addActionListener(new ActionListener()
{

public void actionPerformed(ActionEvent ae)
{

JOptionPane.showMessageDialog(frame, "You clicked!");
}

});

// Groovy
button.addActionListener(

{ JOptionPane.showMessageDialog(frame, "You clicked!") } as ActionListener
)

 2.1.20 Annotations

It is possible to use annotations in Groovy like in Java (Java 5+). There is a limitation in Groovy: It does not allow to

create custom annotations [8]: This is not implemented in Groovy (yet). Since Groovy works well with Java, the

developers can still create their own annotations in Java and use them in Groovy.

 2.1.21 Testing

Testing in Groovy is, like testing in Java, very extensive. A common way to test a application is with JUnit testing. The

name for JUnit in Groovy is GUnit. Codehaus and IBM have written articles about unit testing in Groovy.

Documentation on their fndings can be found on the following websites:

• Codehaus's testing guide: http://groovy.codehaus.org/Testing+Guide

• IBM's fndings: http://www.ibm.com/developerworks/java/library/j-pg11094/

Because the subject GUnit doesn't support our main question, this will not be fully described. Basically, it is the same as

JUnit testing.

23 / 74

Getting Groovy in an SOA

 2.1.22 Working with databases

In addition to its ability to execute SQL in a variety of ways, Groovy also provides the user with a wrapper around the

standard Java classes, adding more functionality and ease of use when working with databases. It is important to

understand that Groovy currently doesn't replace all of Java's original databases connectivity, as the JDBC is still in use.

The frst few examples will show a couple of ways to use plain SQL embedded in Groovy. After that, a few examples of

how datasets work in Groovy are shown. The frst example will start with JDBC, since this a requirement to be able to

do anything with a database.

//This import allows for SQL objects, that can be used to talk straight to the database
import groovy.sql.Sql
import java.util.logging.*

/*
 * There two ways to connect to databases using Groovy. This method is preferred,
 * for it allows Groovy to automate more of the usual SQL work,
 * and allows for reuse of connections.'''
 */
source = new org.hsqldb.jdbc.jdbcDataSource()
source.database = 'jdbc:hsqldb:mem:test'
source.user = 'sa'
source.password = ''
db = new groovy.sql.Sql(source)

The code above does not contain a lot of Groovy specifc code, and should be fairly easy to understand. The HSQLDB is

used in memory with a database called “test”. If desired, any database with a JDBC connector could be used instead.

Once we have a JDBC connection, we are able to parse SQL very easy. There are easier ways to manipulate the data, as

shown further below.

/*
 * Groovy is capable to directly talk SQL to the database
 * using the Sql object that Groovy provides.
 */
db.execute ''' DROP INDEX classIdx IF EXISTS;

DROP TABLE Class IF EXISTS;
CREATE TABLE Class(

classId INTEGER GENERATED BY DEFAULT AS
IDENTITY,

classCode VARCHAR(5),
teacher VARCHAR(64)

);
CREATE INDEX classIdx ON class (classId);'''

The code above is the way of using plain SQL. This form of programming is not very reusable. To achieve re-usability, a

so called prepared statement can be used. A prepared statement is a string with question marks where values should be

inserted. By using the execute function of a Groovy SQL object with the prepared statement and the values as

parameters, the statement can be used.

/**
* A more interesting way (and usually faster as well) is to create a String with question marks
* on places where the values should go. This is called a "prepared statement"
* When db.execute is called with the prepared statement as argument, and a argument
* containing the values that sould go on the question marks, it will work as well.
*/
 def classInsert = '''INSERT INTO Class (classCode, teacher)
 VALUES (?, ?); '''

db.execute classInsert, ['382', 'Einstein']

Working with databases 24 / 74

Getting Groovy in an SOA

Using a simple prepared statement can be a little tricky, since the user has no clue on what information goes where. In

such a situation, switching frst and last name becomes a simple mistake. Using a GString can solve this problem, as in

the example shown below. Here a Gstring is used to create something similar to a table.

The example also shows how to use a closure with a db.execute call that has a GString as its parameter. If there are

diffculties understanding how closures or GStrings work in Groovy, please refer to the earlier parts of this document

(2.1.6 Groovy String).

/*
 * The Groovy implementation of the java String is called a GString, and can be used combined
 * with another GString and a call to the Groovy SQL object to insert data into the database.
 */

def classes = [
 [classCode: '106', teacher: 'Plato'],
 [classCode: '204', teacher: 'Cleopatra'],
 [classCode: '304', teacher: 'Bush']
]

classes.each { currentClass ->
db.execute """INSERT INTO Class (classCode, teacher)
VALUES (${currentClass .classCode}, ${currentClass.teacher})"""

}

All of the examples above use just one table in their data operations, but since databases usually contain a lot more

tables, this isn't very realistic. The technique above can also be used in a slightly different way that involves more tables.

This is shown below.

def students = [
 [first: 'James', last: 'Morrison', birth: '1987-04-21', payed: TRUE',
classCode: '106'],
 [first: 'Britney', last: 'Stears', birth: '1989-09-02', payed: 'TRUE',
classCode: '106'],
 [first: 'Robbie', last: 'Williamed ', birth: '1981-03-24', payed: 'TRUE',
classCode: '204'],
 [first: 'Chist', last: 'Martin', birth: '1986-09-03', payed: 'TRUE', classCode:
'204'],
 [first: 'Nick', last: 'Cavein', birth: '1984-08-08', payed: 'TRUE', classCode:
'304'],
 [first: 'Pete', last: 'Dorethy', birth: '1986-06-06', payed: 'FALSE',
classCode: '304'],
 [first: 'Ben', last: 'van Halen', birth: '1965-11-09', payed: 'TRUE',
classCode: '304']

]

/*
 * The GString can also contain a SELECT query itself.
 */
students.each { student ->
 db.execute """INSERT INTO Student (firstname, lastname, dateOfBirth, payed, class) SELECT $
{student.first}, ${student.last}, ${student.birth}, ${student.payed}, classId FROM Class WHERE
classCode=${student.classCode};"""
}

In all of the examples above, data is added to the database, but none is read from the database. The code belows shows

how this can be done, using the eachRow call to the Groovy SQL object, combined with a bit of SQL. A closure is run for

every item that is return by the call, printing the full name of each student.

/*
* With the eachRow fuction of an Groovy SQL object, a list of records is returned.
* In this example, the list is used into a closure, that prints data from the list.
*/

db.eachRow('SELECT firstname, lastname FROM Student')
{ row -> println row[0] + ' ' + row[1]}

Working with databases 25 / 74

Getting Groovy in an SOA

It is not always desired to directly process each row that is returned like in the example above. In this case, the rows()

function call returns a list. This then can be used just like any other list.

/*
 * It is also posible to get a regular list using the rows function of the Groovy SQL object.
 */

List studentList = db.rows('SELECT firstname, lastname FROM Student')
println "There are ${studentList.size()} students."

All of the example above use one of the forms of SQL processing that Groovy supports, but Groovy also provides

another way to access the database. This method, using so called datasets, does have its limits: It does not allow any

update or delete operations, nor does it allow the creation of database schema's [4]. Its syntax is usually much shorter

than most SQL statements, and there is no SQL required.

The following examples will show similar or extended functionality to those above, except they will all use the Groovy

dataset class.

The frst example will show how a dataset on a single table is created, and how a single record is added to this table.

Take note that Class is the name of the table to be accessed.

/*
 * One of Groovy's most powerful database function is the dataset.
 * It can be used for a multitude of functions, one of them added new records.
 */
classSet = db.dataSet(Class)

classSet.add(
classcode: '606',
teacher: 'Genghis')

Using a dataset to read data from a database is not more complicated then adding data to the database. In the next

example a closure is ran for each record returned. Note how felds from the table can be accessed like they where actual

variables of a class.

/*
 * Above, a dataset is used to insert data into the database. Here, we use it to print
 * data for a table.
 */

studentSet = db.dataSet('Student')

studentSet.each {
println it.firstname + " " + it.lastname + " payed: " + it.payed.toString()}

It is also possible to access data from multiple tables at once using a view as the source for the dataset, instead of a

single table. To create the view, the use of SQL is needed. Also note that a dataset made from a view is read-only. To alter

the table, the use of normal SQL is needed.

/*
 * It is also possible to create Datasets from views. A databased based upon a view creates a
read only view
 * across multiple tables. with the findall function, this data can be further trimmed down to
only contain
 * the needed data.
 */

db.execute '''DROP VIEW StudentTeacher IF EXISTS;
CREATE VIEW StudentTeacher AS
SELECT * FROM Student INNER JOIN Class
ON class=classId;'''

record = db.dataSet('StudentTeacher').findAll{ it.classCode=='304'}
record.each{ println it.firstname + ' ' + it.lastname + ': ' + it.classCode }

Working with databases 26 / 74

Getting Groovy in an SOA

Summary

Groovy has a few ways to talk to a database (Figure 5: Groovy and databases), some simpler then others. We believe, that

all of the them are fairly easy compared to the standard code Java provides. Groovy however, not only eases the use of

databases, but also adds functionality to the standard Java code, using the Groovy specifc features such as closures and

the GString.

Further more, there is no single best technique to access the database. In a CRUD application, the Groovy dataset will be

almost enough for the build the entire application, and hereby decrease the use of plain SQL in the code. Other database

operations can still be done by using (prepared) SQL statement.

As such, we believe Groovy is a better alternative for Java in case of lot of database connectivity is required.

Working with databases 27 / 74

Figure 5: Groovy and databases

Getting Groovy in an SOA

 2.2 Meta Object Protocol

The Meta-Object Protocol (Figure 6: Working with the MOP) enables Groovy to dynamically change the behavior of

classes and objects at runtime [4]. A MetaClass is provided for each class, whether it's POJO or a POGO. This

MetaClass contains information like the available methods and properties.

Meta Object Protocol 28 / 74

Figure 6: Working with the MOP

Getting Groovy in an SOA

The MetaClass comes in action when a property of an object is being referenced or a method is being invoked. Instead of

letting the objects handle the requests themselves, they are sometimes being routed to the right MetaClass. This process

is infuenced by a few factors. In the case of a method invocation, these are the following;

First of all, the type of the requesting object is inspected. If it is a POJO, the MetaClass is retrieved from the so called

MetaClassRegistry, which aggregrates all MetaClasses that are available. Subsequently, the MetaClass' invokeMethod is

called, with the name of the method and the arguments passed to it.

On the other hand, when the object is a POGO, a few other considerations are made. First, it is determined whether the

object implements the GroovyInterceptable interface, which will be explained later on. If that is the case, the

interceptables invokeMethod is called.

Otherwise, it is checked whether the requested method exists in the objects Class or MetaClass. If so, the method is

called directly. If not, Groovy inspects the object and checks for properties with the name of the requested method. If

one exists, it is determined whether this property is a Closure and thus executable. If so, Groovy calls the closure.

In all other cases, Groovy checks whether the object has an implementation of the methodMissing method. If so, it calls

this, enabling the developer to intercept calls to inexistent methods. Finally, Groovy checks whether the objects itself has

an implementation of invokeMethod, and if so, it calls this. If not, it throws an MissingMethodException.

 2.2.1 Interceptable

As mentioned before, the GroovyInterceptable interface can be used to add supplementary logic to method calls, which

can be useful for logging, security or exception handling.

import org.codehaus.groovy.runtime.InvokerHelper

public static class CustomLogger
{

static void Log(String message)
{

println "Method called: " + message;
}

}

public class Interceptable implements GroovyInterceptable
{

Object invokeMethod(String name, Object args)
{

CustomLogger.Log(name);
def metaClass = InvokerHelper.getMetaClass(this)
def result = metaClass.invokeMethod(this, name, args)

return result
}

def greet()
{

return 'Hello World!'
}

}

def ic = new Interceptable();
println ic.greet();

//Method called: greet
//Hello World!

The above example illustrates how dynamic method invocation can be used to intercept method invocations. To achieve

this, the class must implement the GroovyInterceptable interface. This allows for overriding the invokeMethod

method, so the method call can be logged. However, because the default behavior is overridden, the actual method call

must be rebuild. This is done by obtaining the MetaClass that is related to the Groovy class interceptable, and calling

invokeMethod on it.

Interceptable 29 / 74

Getting Groovy in an SOA

 2.2.2 Categories

Furthermore the MOP provides Groovy with so called categories. A category is used when there is need to temporarily

add functionality to a class that doesn't allow this.

The class Integer for example, is declared fnal and can thus not be extended. Say that for a given integer-value, you

want to check whether it's a valid dutch bank account number. This can be done with a reasonably simple calculation

which doesn't require further explanation to illustrate the workings of categories.

class PaymentValidation
{

def static Boolean validateBankaccount(Integer bankaccount)
{

if(bankaccount.toString().length() == 9)
{

def i = 0
def totaal = 0
for(c in bankaccount.toString())
{

totaal += ((9-i) * c.toString().toInteger())
i++

}
return (totaal % 11 == 0)

}
return false

}
}

use(PaymentValidation)
{

println 123456789.validateBankaccount()
//prints true
println 829531673.validateBankaccount()
//prints false

}

println 123456789.validateBankaccount()
//throws MissingMethodException

The category-method has to be declared static in order for it to be accessible without an instance of the containing class.

A call to the category has to be nested inside a use-block. This delimits the scope of the category as shown in the

example.

 2.2.3 Expando

Another useful aspect of the MOP as implemented by Groovy, is the Expando class. Other then the methods and

properties it inherits from extending groovy.lang.GroovyObject, it is empty. At runtime, properties and methods

can be added as required.

def ex = new Expando()
ex.length = 100
ex.width = 200

ex.getSurfaceArea = {
 return ex.length * ex.width
}
println ex.getSurfaceArea()

Internally, an Expando exists of a Map wherein al properties and methods are stored as key-value pairs, thus allowing

the Expando to resize as needed.

Expando 30 / 74

Getting Groovy in an SOA

 3 Webservices in Groovy

3
Webservices in Groovy

“ Trust me - we [Web Services]
will move way beyond the
suckline - there is too much
money on the table. “

- Jeff Schneider

Webservices in Groovy 31 / 74

Getting Groovy in an SOA

 3.1 Creating, manipulating, validating and parsing XML

Due to Groovy's dynamic nature, working with XML is very easy [8]. This is demonstrated in the following examples,

where a XML fle containing contact data is used. For a given contact, the following information is included;

• Name;

• Birthday;

• Address, containing both city and street;

• One or more phonenumbers;

• One or more e-mail addresses;

• Occupation;

When represented in XML, this looks like this;

<contacts>
 <contact name="John Malmon" birthday="07-01-1960">
 <address>
 <street>Broadway</street>
 <city>New York</city>
 </address>
 <phonenumbers>
 <phonenumber>0191740284</phonenumber>
 </phonenumbers>
 <emailaddresses>
 <mailaddress>john.malmon@gmail.com</mailaddress>

 <mailaddress>j.malmon@microsoft.com</mailaddress>
 </emailaddresses>
 <job type="Microsoft Programmer" />
 </contact>
</contacts>

Due to Groovy's dynamic nature, processing an XML-document is quite easy. At runtime, classes and properties are

created that map to the corresponding nodes in the XML-tree.

Groovy provides three classes for processing XML fles. The XmlParser and XmlSlurper-classes have a similar API, but

the XmlSlurper has less overhead, whereas the XmlParser has the ability to manipulate the XML fle. The

DOMCategory-class provides similar functionality, but also enables more low-level operations.

When using the XmlParser to print the contact-information for all users in the addressbook, the code will look

something like this;

import nl.han.grandeur.xmlprocessing.documents.*;

def records = new XmlParser().parseText(XMLdocument.CONTACTS)
records.contact.each{

println 'Name: \t\t\t' + it.'@name'
println 'Birthday: \t\t' + it.'@birthday'
println 'Street: \t\t' + it.address.street.text()
println 'City: \t\t\t' + it.address.city.text()
println 'Phonenumbers: \t\t' + it.phonenumbers.phonenumber
println 'E-mailaddresses:\t' + it.emailaddresses.mailaddress
println 'Job: \t\t\t' + it.job.'@type'.text()

}

• it.'@name' - Prints the node attribute (In this case “name”)

• .text() - Prints the node value

• phonenumbers.phonenumber - Prints all “phonenumber” nodes found in the

“phonenumbers” node.

First, the string representation of an XML-document is passed in to a new instance of the XmlParser-class. Then the

information for the contacts is retrieved and printed to the console.

Constructing an XML-document like the one previously shown is, as shown below, really easy with Groovy's

MarkUpBuilder and StreamingMarkUpBuilder.

Creating, manipulating, validating and parsing XML 32 / 74

Getting Groovy in an SOA

def writer = new StringWriter()
def xml = new MarkupBuilder(writer)
xml.contacts()
{

contact(name: 'John Malmon', birthday: '07-01-1960')
{

address()
{

street('Broadway')
city('New York')

}
phonenumbers()
{

phonenumber('0191740284')
}
emailaddresses()
{

mailaddress('john.malmon@gmail.com')
mailaddress('j.malmon@microsoft.com')

}
job(type: 'Microsoft Programmer')

}
}

println writer.toString()

This will print the exact same XML-document as the one shown before.

To manipulate an XML-document, both the XmlParser and the DOMCategory-class can be used. In this example, the

DOMCategory class is used to change Johm Malmon's address and phonenumber.

import groovy.xml.DOMBuilder
import groovy.xml.dom.DOMCategory
import nl.han.grandeur.xmlprocessing.documents.*;

def reader = new StringReader(XMLdocument.CONTACTS)
def doc = DOMBuilder.parse(reader)
def records = doc.documentElement

use (DOMCategory)
{
 def john = records.contact.find{ it.'@name' == 'John Malmon' }
 john.address.street.each { street -> street.value = '40th St' }
 john.address.city.each { city -> city.value = 'Redmond, Washington' }

 john.phonenumbers.each { it.appendNode('phonenumber', "0191836953") }
}

Creating, manipulating, validating and parsing XML 33 / 74

mailto:'john.malmon@gmail.com
mailto:'j.malmon@microsoft.com

Getting Groovy in an SOA

Finally, Groovy provides the ability to validate XML to a certain schema [8]. The schema that is used can be found in

appendix 9.1.

import nl.han.grandeur.xmlprocessing.documents.*
import javax.xml.XMLConstants
import javax.xml.transform.stream.StreamSource
import javax.xml.validation.SchemaFactory

def factory = SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI)
def schema = factory.newSchema(new StreamSource(new StringReader(XMLschema.SCHEMA)))
def validator = schema.newValidator()

try
{

validator.validate(new StreamSource(new StringReader(XMLdocument.CONTACTS)))
println 'The document complies to the provided XML-schema'

}
catch(Exception ex)
{

println 'The provided document does not comply to the provided XML-schema'
}

34 / 74

Getting Groovy in an SOA

 3.2 SOAP-based webservices

 3.2.1 GroovySOAP

Groovy provides a module called Groovy SOAP, that enables developers to both create SOAP-based webservices and

clients. Groovy SOAP is based on XFire [8].

XFire, an open source Java SOAP framework created by The Codehaus, has been created for development and

consumption of web services. XFire makes service oriented development approachable through its easy to use API and

supports standards. The framework uses the StAX (Streaming API for XML) for processing XML documents [26].

Features and Goals

“ • Support for important Web Service standards - SOAP, WSDL, WS-I Basic Profle, WS-

Addressing, WS-Security, etc.

• High performance SOAP Stack.

• Pluggable bindings POJOs, XMLBeans, JAXB 1.1, JAXB 2.0, and Castor support.

• JSR 181 API to confgure services via Java 5 and 1.4 (Commons attributes JSR 181 syntax).

• Support for many different transports - HTTP, JMS, XMPP, In-JVM, etc.

• Embeddable and Intuitive API.

• Spring, Pico, Plexus, and Loom support.

• JBI Support.

• Client and server stub generation.

• JAX-WS early access support.

[Source: http://xfre.codehaus.org/] “

“ • Create a fexible SOAP framework, where any processing mechanismcan be plugged in.

• Be SOAP 1.2 and WS-I 1.1 compliant. Also to offer support for non-RPC/Encoded SOAP 1.1

services.

• Intuitive, easy to use API.

• Be Fast.

• Allow many different binding methods (traditional java types, OGNL, Castor, JaxME, etc).

• Create a processing model where your web service model and your java model can develop

independently (see the Aegis Module).

• Modules for WS-Security and WS-Adressing support.

[Source: http://xfre.codehaus.org/FAQ] “

An important note about XFire

As stated on the XFire website [26]: XFire is now Apache CXF. When you're planning to work on a new project, you

should use CXF. CXF is considered to be XFire 2.0, as CXF has many new features, bug-fxes and is JAX-WS compliant.

XFire will be maintained through bug fxes, but no new features will be added, since most development will occur on

Apache CXF.

GroovySOAP 35 / 74

Getting Groovy in an SOA

To illustrate how Groovy SOAP can be used to create a SOAP-based webservice, the bank account-validation example

from the previous chapter will be used. An endpoint with a single 'validateBankaccount'-method is created, that accepts

an Integer and returns a Boolean to indicate whether the supplied value is a valid dutch bank account number.

import groovy.net.soap.SoapServer

public class PaymentValidation
{

def boolean validateBankaccount(Integer bankaccount)
{

if(bankaccount.toString().length() == 9)
{

def i = 0
def totaal = 0
for(c in bankaccount.toString())
{

totaal += ((9-i) * c.toString().toInteger())
i++

}
return (totaal % 11 == 0)

}
return false

}
}

def server = new SoapServer("localhost", 7003)
server.setNode("PaymentValidation")
server.start()

The above code is quite simple, a PaymentValidation-class is declared, then a new instance of the SoapServer-class is

instantiated, the PaymentValidation-class is set as the endpoint and the server is started.

XFire is responsible for everything that happens under the hood. It creates the WSDL and routes requests to the

PaymentValidation-class.

XFire acknowledges that the types of both the inputparameter and the returnvalue are explicitly declared, and therefore

maps these to corresponding XSD-types in the WSDL.

<xsd:element name="validateBankaccount">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="1" name="in0" nillable="true"

type="xsd:int"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:element name="validateBankaccountResponse">
<xsd:complexType>

<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="1" name="out" nillable="true"

type="xsd:boolean"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

If the Groovy def keyword would have been used, XFire would not be able to determine the type of the variable, and

both the inputparameter and the returnvalue would have been translated into 'xsd:anyType'.

To consume this webservice in Groovy, a simple consumer can be made using the SoapClient-class like this;

import groovy.net.soap.SoapClient
def proxy = new SoapClient("http://localhost:7003/PaymentValidationInterface?wsdl")
println proxy.validateBankaccount(123456789)
//prints 'true'
println proxy.validateBankaccount(123456788)
//prints 'false'

GroovySOAP 36 / 74

Getting Groovy in an SOA

Due to Groovy's dynamic nature, there is no need to generate stubs. This enables developers to consume a webservice

in as many as two lines of code. Furthermore, it doesn't require any extensive confguration in XML-fles.

The abstraction of technical details has it's downsides though. When the endpoint in the previous example is examined,

no package-declaration can be found. If a package declaration would have been included, the reference to the endpoint

in the SoapServer-instance would have to be changed to something like this in order for the PaymentValidation-class to

be found;

server.setNode("nl.han.grandeur.PaymentValidation")

However, XFire creates an interface with the exact same name that points to the endpoint-class. In this case, this will

result in an interface-declaration like this;

public interface nl.han.grandeur.PaymentValidation...

Because no periods are allowed in class- and interface names, this will lead to an exception.

Furthermore, Groovy SOAP can not handle Groovy's metaClass when mapping input parameters and return values to

xsd-types. Therefore, the metaClass has to be explicitly excluded in this process. This creates a situation where,

Expando's for example, cannot be used as the return value of an operation.

Another limitation concerns the client-side aspect of web services. Groovy SOAP does not support complextypes in

requests; only datatypes that can be translated into the existing xsd-types like 'xsd:String' and 'xsd:Integer' can be

used [33].

However, as stated above, the XFire project itself is no longer supported and is continued as Apache CXF. Groovy has

adapted to this change with a new module, called GroovyWS which will be discussed in the next chapter.

 3.2.2 GroovyWS

GroovyWS provides a module to create webservices as well as consume them. This module replaces the old Groovy

SOAP [8]. GroovyWS requires Java 5, because it uses Apache CXF and CXF only works on Java 5+ platforms.

“ Apache CXF is an open source services framework. CXF helps you build and develop services using

frontend programming APIs, like JAX-WS. These services can speak a variety of protocols such as

SOAP, XML/HTTP, RESTful HTTP, or CORBA and work over a variety of transports such as HTTP,

JMS or JBI.

[Source: http://cxf.apache.org/] “

Furthermore, it is important to know that GroovyWS does not support contract frst development of webservices yet

[33].

Setting up a webservice

In this example, a client is written that sends an username to a webservice. The webservice will reverse the name and

send it back.

First we will create a new fle called Server.goovy. This will be our server.

import groovyx.net.ws.WSServer

server = new WSServer()
server.setNode("grandeur.flipservice.ServiceEndpoint", "http://localhost:9001/Flip")
server.start()

GroovyWS 37 / 74

Getting Groovy in an SOA

After creating an instance of WSServer, the setNode method is used. This method accepts two parameters. The frst

parameter is class used as endpoint. The second argument tells GroovyWS where the newly created service should be

published.

The next step would be to create the ServiceEndpoint. This can be done either in the same fle, where the server code is

located (Server.groovy), or in a newly created fle called ServiceEndpoint (show below).

Note how both the parameter and the returntype show below are statically typed. If Groovy specifc dynamic typing

would have been used, GroovyWS would not have been able to properly the required types, and would have

responded with a xsd:any element.

The following code does the fip:

class ServiceEndpoint{
def String flip(String username){

def flippedUsername = username.reverse()
return flippedUsername

}
}

Running both of the code snippets above will create a webservice at the specifed location, that can be accessed using

the URL to the specifed location when the “?wsdl” suffx is added. If desired, the service can be tested by using a tool

like soapUI.

In the example above, the method only accepts one parameter of the type String. It is also possible to accept an POGO

that was previously defned. If an object is to be accepted or returned, an additional XML confguration fle is needed to

make sure GroovyWS ignores the metadata class. An example of such a fle is show below:

<?xml version="1.0" encoding="UTF-8"?>
<mappings xmlns:sample="http://DefaultNamespace">
 <mapping name="sample:classname">
 <property name="metaClass" ignore="true"/>
 </mapping>
</mappings>

The above should be edited as needed and placed in an XML fle called <classname>.aegis.xml [8].

To demonstrate how an RESTful service can be consumed using GroovyWS, the following example calls upon the

Last.fm service to provide the last played track for the username send to the service.

To consume a webservice, the ServiceEndpoint needs to be modifed. The following example shows the modifed

ServiceEndPoint, where an external webservice called upon (Last.fm in this case) with the given username. The

response of the service now contains both the reversed name and the last played song in Last.fm.

def Profile flip(String username){
def flippedUsername = username.reverse()

URL url = new URL ("http://ws.audioscrobbler.com/2.0/?
method=user.getrecenttracks&user=${username}&api_key=42c902a953202e9b20d5b60af2fb77ea")

InputStream inputStream = url.openStream()
def lfm = new XmlParser().parse(inputStream)
def lastTrack = lfm.recenttracks[0].track[0].name[0].text()

Profile profile = new Profile()
profile.flippedUsername = flippedUsername
profile.lastTrack = lastTrack

return profile
}

As seen above, consuming a webserver is as simple as providing an URL, calling upon the service and parsing the result

to XML.

GroovyWS 38 / 74

Getting Groovy in an SOA

In this example, the only part of Last.fm's response used is the last played track. Using the XmlParser, only the last track

is read from the response and stored in a object called profle. This defnition of this object is show below:

class Profile{
String flippedUsername
String lastTrack

}

Note that before it is possible to use the Profle class as response for a service, an aegis XML fle is needed. The content

of such a fle can be found in earlier examples.

 3.3 RESTful webservices

This part is about making simple RESTful requests and transforming the resulting XML to Groovy objects.

For the following example, the following assumptions are made:

• There is a RESTful webservice available.

• The RESTful webservice returns XML.

• XML can be parsed to Groovy objects

Looking for a webservice

In this example, the Last.fm webservice is used. It has a clear API and has some interesting functions. Last.fm is also

easy to use and has the potential to grow. This example uses the “User Get Recent Tracks” method. This returns

information about a user, therefore, a valid last.fm username is required, as well as an api key. Both are easily obtainable

from the last.fm website.

Checking the XML

Last.fm uses an request response method. The api provides an example of how the returned XML will look like. It is

recommended to examine this before trying to use the XML in an application.

According to the api, the url should look something like this:

http://ws.audioscrobbler.com/2.0/?method=user.getrecenttracks&user=<username>&api_key=<apikey>

If desired, most modern webbrowsers can display the XML fle using the URL above.

RESTful webservices 39 / 74

Getting Groovy in an SOA

GroovyRestlet

The RESTlet framework has proven to be a nice framework for creating RESTful webservices. It is widely used in Java.

When using RESTlet, one can create a RESTful webservices to their likings. RESTlet can also be used to develop client-

side applications, all with the same API. RESTlet also provides URI as UI support, creating an easy way to point the

request made to the right location inside your application.

GroovyRestlets enables the use of the RESTlet framework in Groovy. If one has created RESTlets in Java, this would be a

gift from heaven. Why? Because Groovy is considered to be “an agile dynamic language for the Java Platform”.

Wouldn't it be convenient to create RESTful services in a dynamic environment?

While GroovyRestlet can provide an RESTful environment in an application, Grails has almost the same support. The

main difference between GroovyRestlets and Grails applications is that Grails is a framework with its own conventions.

Grails also forces MVC implementations. Some programmers might not like the idea that Grails handles REST as

CRUD, making it a fle storage / reading service.

In RESTlet programmers can choose their own conventions and can choose not to approach REST as CRUD. However,

this also lays a larger burden on the developer. If one likes MVC and approaching REST as CRUD, wouldn't it be smart

to choose a framework already supports that?

RESTlet gives the freedom to create an application with RESTful support the way a developer might want it. Grails

gives a set of widely used pattern solutions but at the same time enforcing them.

RESTlet is a Java framework and has it's own community, Grails is also a framework. But because Grails is Groovy

related and RESTlet isn't only Groovy related, the working in Groovy is not highlighted. As said on the Groovy website;

GroovyRestlet creates shortcuts to RESTlet related features.

RESTful webservices 40 / 74

Getting Groovy in an SOA

Using the XML in Groovy

Groovy has a lot of ways to convert XML to understandable code. In this example XmlParser is used. XmlParser accepts

fle inputstreams, which is needed to load the fle.

def xml = new XmlParser().parse(file);

The code above parses a flestream into a new object called xml.

In order to use XML from a external source, an flestream is needed. This show in the example below:

def username = "something";
def apikey = "something";
def address = "http://ws.audioscrobbler.com/2.0/?method=user.getrecenttracks&user=" + username
+ "&api_key=" + apikey;

println "Requesting " + address;

//create a new url, to put into a filestream
def u = new URL(address);
def file = u.openStream();

Using the code from the previous snippet allows Groovy to use the external fle as an inputstream. All that's left now is

to loop through the XML.

def xml = new XmlParser().parse(file);
//print the username returned by the XML (@user is the attribute 'user')
def output = xml.recenttracks.'@user'.text() + " listened to the following tracks:\n";

for (def i = 0; i < xml.recenttracks.track.size(); i++) {
// create groovy objects from the XML
def artistname = xml.recenttracks.track[i].artist.text();
def trackname = xml.recenttracks.track[i].name.text();
def nowplaying = xml.recenttracks.track[i].'@nowplaying';
//print the tracks: <artist> - <trackname>
output += "\n";
if (nowplaying == "true") {

output += "(Now playing) ";
}
output += artistname + " - " + trackname;

}

println output;

RESTful webservices 41 / 74

mailto:'@nowplaying

Getting Groovy in an SOA

 3.4 Securing webservices

With the default settings, the ApacheCXF module that is used by Groovy doesn't implement any forms of security

(Figure 7: Default Security Settings) [24]. Any kind of client can view the XML (WSDL) fles and make use of the server.

This is, for testing purposes, very convenient: there is no don't need to hassle with security settings. If the service is

placed on a public location (For example: the Internet) and the service is not intended for public use, security is needed.

To add security, one of the WS-* standards comes in play: WS-Security. This standard enables security above and

beyond transport level protocols, as well as allows encryption and signing of messages. ApacheCXF uses WSS4J to

implement the WS-Security standards (Figure 8: WS-Security Added).

Securing webservices 42 / 74

Figure 7: Default Security Settings

Figure 8: WS-Security Added

Getting Groovy in an SOA

WSS4J has the following features [34] :

• XML Security

◦ XML Signature

◦ XML Encryption

• Tokens

◦ Username Tokens

◦ Timestamps

◦ SAML Tokens (Security Assertion Markup Language)

• Basic Authentication

By combining a few of the above features, a service can be made as secure as desired.

It is important to know that GroovyWS is fawed considering security. The only form of security that GroovyWS

currently supports is Basic Authentication [8]: Asking for a username and password. All the other kinds of security

(XML Security and Tokens) are not (yet) implemented by GroovyWS.

If these security feature are needed, it is possible to use WSS4J or Apache CXF instead of GroovyWS, since Groovy is

fully compatible with Java. On it's own, Groovy is only suitable to create unsecured or weakly secured webservices and

therefore not all that suitable.

Securing webservices 43 / 74

Getting Groovy in an SOA

 4 Grails

4
Grails

“ There are only two kinds of
languages: the ones people
complain about and the ones
nobody uses. “

 - Bjarne Stroustrup

Grails 44 / 74

Getting Groovy in an SOA

To achieve human interaction with webservices in a SOA, there needs to be some form of a client. This client could be a

Groovy application, but this would mean the user would have to download and install the application. However, when

an application is distributed to broad audience, a webapplication is often more convenient.

Clients for a SOA are regularly build as a dashboard that can be accessed through a web browser [10]. The user doesn't

need to download and install a application: It can access a website and perform the actions needed. Currently, Groovy

doesn't (natively) support web server support. This is were the Grails framework comes in to play.

Grails is an open source web application framework which leverages on Groovy (Figure 9: Grails is build on top of Groovy)

[9]. It was frst developed in 2005 and the frst “1.0” release was announced in 2008 [35].

The framework has been created following the “coding by convention” (also known as “Convention over

confguration”) and makes use of the Model-View-Controller pattern.

“ Grails has been developed with a number of goals in mind:

• Provide a high-productivity web framework for the Java platform.

• Re-use proven Java technologies such as Hibernate and Spring under a simple, consistent

interface

• Offer a consistent framework which reduces confusion and is easy to learn.

• Offer documentation for those parts of the framework which matter for its users.

• Provide what users expect in areas which are often complex and inconsistent:

◦ Powerful and consistent persistence framework.

◦ Powerful and easy to use view templates using GSP (Groovy Server Pages).

◦ Dynamic tag libraries to easily create web page components.

◦ Good Ajax support which is easy to extend and customize.

• Provide sample applications which demonstrate the power of the framework.

• Provide a complete development mode, including web server and automatic reload of

resources.

[Source: http://en.wikipedia.org/wiki/Grails_(framework)] “

Grails 45 / 74

Figure 9: Grails is build on top of Groovy

Getting Groovy in an SOA

 4.1 Scaffolding

 4.1.1 What is Scaffolding?

Scaffolding is a technique that's implemented by some MVC frameworks [36]. It allows the developer to generate the

View and Controller, based on the information found in the Model. The code of the View and the Controller is turn-

based on a pre-defned template.

The controller will automatically contain the CRUD actions. It allows for faster development, since the developer

doesn't need to create the functions and views.

There are two types of scaffolding: Static and Dynamic.

Static Scaffolding (or Scaffold generation)

This form of scaffolding will create the actual code for the programmer. The developer needs to create his model and

and execute the scaffolding command. The View and Controller will be generated based on the Model and will

automatically implement CRUD actions. The way the code is generated is turn-based on a template.

The developer can now edit the Controller and the View to make any necessary changes (if there are any). This form of

automatically creating code will speed up the programming process.

Dynamic Scaffolding

Dynamic Scaffolding allows the creation of the Controller and the View at runtime. This form of scaffolding only works

in a dynamic language.

Because of this the developer would not be able to edit the Controller and View, since they do not exist yet while

programming. Other than that, there is virtually no difference between the static and dynamic way of scaffolding.

 4.1.2 Scaffolding in Grails

Grails supports both static and dynamic scaffolding. The First example will show how to work with the static

scaffolding. And afterwards there will be a small example on how to use dynamic scaffolding.

The same domain and domainclasses as stated in the next chapter (4.2 GORM) will be used: Contact, Company,

Employee and Address.

Static Scaffolding

To generate the scaffolds in Grails, the following command will need to be executed through the command-line inside

the project directory:

grails generate-all [Domain Class]

In this example, the 'Address' domain class will be scaffolded. The Controller and Views (Figure 10: Generated views

for the Address model with Static Scaffolding) will now be generated for the developer. The way the code is generated,

is based on templates that can be changed.

Next to the CRUD actions, Grails adds the “list” action. The “edit” and “save” functions work together with “update”

and “create”.

Scaffolding in Grails 46 / 74

Figure 10: Generated views for the Address model with Static Scaffolding

Getting Groovy in an SOA

• Create - create.gsp - Creates a new address

• Read - show.gsp - Show one address (Based on ID)

• Update - edit.gsp - Retrieve one address (Based on ID) that needs to

be changed

• Delete - No view - Delete one address (Based on ID)

• List - list.gsp - List all addresses

• Edit - No view - Save the updated address

• Save - No view - Saves the newly created address

The AddressController now looks like this. The functions are self-explanatory.

class AddressController {

 def index = { redirect(action:list,params:params) }

 // the delete, save and update actions only accept POST requests
 def allowedMethods = [delete:'POST', save:'POST', update:'POST']

 def list = { //... }

 def show = { //... }

 def delete = { //... }

 def edit = { //... }

 def update = { //... }

 def create = { //... }

 def save = { //... }
}

The entire AddressController can be found in appendix 9.2.

Dynamic Scaffolding

Dynamic Scaffolding in Grails is really easy. This can be achieved by adding the following line inside the controller that

needs to be scaffolded.

def scaffold = true

The CRUD actions and views will be automatically generated at runtime for the previously defned model.

Scaffolding in Grails 47 / 74

Getting Groovy in an SOA

 4.2 GORM

As noted before, the Grails framework heavily relies on predefned folder structures and other conventions in an

attempt to reduce the amount of confguration that is needed for the different assets of the framework. As a part of this,

domain classes are accommodated in a separate folder. This way, Grails can identify and treat them as such.

By default, Grails assumes that every domain class has to be persistent. It uses an technique called Grails Object

Relational Mapping also shorted as GORM [3], to be able to automatically persist the data to a number of different data

stores. GORM uses Hibernate under the hood to achieve this [9].

When creating an application, Grails automatically creates a Datasource-class where confgurations for different

environments can be defned. This allows for an easy switch between the development, test and production stage of a

project. For instance, an in-memory database can be used for development, a local MySql-instance for testing, while the

application, when in production, will use an existing remote database.

To illustrate how GORM works, the contact list-case will be reused, be it in a slightly extended form. The contact list

consists of a number of contacts, each with a frst- and last name, birthday, phone number, e-mail and address.

Furthermore, a contact can have null or more jobs. As an employee, a contact has a job title, a phone number, an e-mail

address and optionally a fax-number. Off course, an employee is also related to a certain company. A company has a

name and an address.

When translated to Groovy classes, there might be an Contact-class that looks somewhat like the following;

import java.util.Date;

class Contact {
String firstname
String lastname
Date birthday
String phonenumber
String emailaddress
Address address
//... some sort of list of jobs

}

In the above example, all of the properties except for the Address, will resolve in homonymous columns in a table called

'contact'. The address however, is accommodated in a separate class, and will therefore resolve in a table called 'address',

which is referenced by a one-to-one relationship.

In order for the contact to be able to have multiple jobs, there has to be a one-to-many relationship between 'contact' and

'employee'. Grails enables this behavior by jet another convention.

static hasMany = [jobs:Employee]

When a static property called 'hasMany' is used, Grails recognizes that this class has a one-to-many relationship with

one or more classes. This 'hasMany'-property is expected to be a map. This enables a reference to multiple classes, which

are each named by their corresponding key.

An employee by itself is meaningless; it's only when references to both a contact and a company are made, that an

employee can be identifed by it's name and it's employer. Therefore, the relationship between both employee and

contact and employee and company have to be bidirectional. This ensures that when either a company or a contact is

deleted, it's accompanying employee's will be deleted too. In Grails, this is done through use of the 'belongsTo'-property

GORM 48 / 74

Getting Groovy in an SOA

class Employee {
Contact contact
Company company
String phonenumber
String emailaddress
String fax
String jobtitle
static belongsTo = Contact, Company

}

Besides these relations, some constraints have to be defned to be able to ensure the validity of the user input. There are

numerous types of validation rules that can be applied, but in this case only the format of the zip-code has to be

validated, which in this case means 4 numbers, an optional whitespace and two letters.

The code to implement this is pretty straightforward;

class Address {
static constraints = {

zipcode(matches:"\\d{4}\\s?[a-zA-Z]{2}")
}

String city
String address
String zipcode
String country

}

The static property constraints expects an closure wherein the constraints are declared. In this case, the property zip-

code is validated by checking it's value against a regular expression.

By default, Grails expects all of the properties to be mandatory. To override the default behavior, a list of optionals can

be defned, in this case the 'fax'-property of the 'employee'-class.

static optionals = ["fax"]

 4.2.1 Using GORM with legacy database schemas

Usually, the best way to use GORM is to let it automatically manage the database, and the tables it uses to store the data.

Sadly, this way isn't always possible. In these cases, a custom mapping is needed to use to be able tot use GORM at all.

Creating custom mapping is done by explicitly specifying the table and the column used to store data on a request to

save the object. This mapping looks like this:

class Member {
String name
String surname
String street
Integer nr

static mapping = {
table 'person'
name column:'name_first'
surname column:'name_last'
street column:'address'
nr column:'house_nr'
}

}

Using GORM with legacy database schemas 49 / 74

Getting Groovy in an SOA

It is possible to only specify the table to use. In this case, Grails will try to use this table as it sees ft, possibly alerting the

table if permitted. The mapping per variable prevents this, and makes sure all data is written to the right columns.

It is also possible to create one-to-one,one-to-many and many-to-many mappings using this way of mapping, as in the

examples shown below:

One-to-One

class Member {

String name
String surname
String street
Integer nr
Occupation occupation

static mapping = {
table 'person'
name column:'name_first'
surname column:'name_last'
street column:'address'
nr column:'house_nr'
occupation column:'jobID'
}

String toString()
{

name + " " + surname
}

}

One if the simplest relations in the one-to-one relation. Specifying the table where the object is to be saved gives enough

information to Grails to save all objects and fll in the foreign keys. In fact, the technique it's very similar to saving the

data of an ordinary feld.

One-to-Many relations are slightly more complex. On the “one” side of the relation, the confguration is exactly the

same as the one found in a one-to-one relationship. The “many” side of the relation needs both the “hasMany”

declaration (as seen below) and a mapping to save the relationship properly. The example below shows the “many” side

of the One-to-Many and a side of a Many-to-Many relationship:

One-to-Many

class Organization {

String name
Integer companyCode

static belongsTo = Land
static hasMany = [employees:Occupation, lands:Land]

static mapping = {
table 'company'
name column:'name'
companyCode column:'number'
employees column:'companyID'
lands column:'Organization_Id',joinTable:'Land_Organization_Link'
}

String toString()
{

name
}

}

Using GORM with legacy database schemas 50 / 74

Getting Groovy in an SOA

To properly be able to save the many-to-many relationship, one of the sides must be the controller, and only a call to the

save() function of the controller will save all the objects and the relationship to the database. Specifying the

controller is done by adding the “belongsTo” keyword to the non-controlling side of the relationship, as can be seen in

the example shown above. To properly create a many-to-many relationship a join-table is needed. If this table is not

explicitly specifed, Grails will create one on it's own, using it's own naming schema. To make sure Grails uses the

existing table to save the relationship, a mapping specifying the join-table is used. This can be seen in the examples

above and below.

Many-to-Many

class Land {

String country
String code

static hasMany = [organizations:Organization]

static mapping = {
table 'country'
country column:'name'
code column:'landcode'
organizations column:'Land_Id',joinTable:'Land_Organization_Link'
}

}

As seen in the examples above, it is relatively simple to create a custom ORM mapping when this is needed. It is both

easier and faster to let Grails take care of the ORM then specifying the structure manually. It is recommended not to use

the method above unless the standard Grails approach can not be used [6].

Using GORM with legacy database schemas 51 / 74

Getting Groovy in an SOA

 4.3 REST in Grails

When people think about enterprise applications and solutions, the term REST (Represintational State Transfer) might

be said once or twice. The term is often used in a looser sense to describe any simple interface which transmits domain-

specifc data over HTTP without an additional messaging layer such as SOAP or session tracking over HTTP cookies.

While the REST is not only for use on the web, the world wide web is a good example of a REST design. This leans on

four types of requests that can be send to an external server: POST, GET, PUT and DELETE.

The popularity on webservices is growing, proving to be useful in situations where data has to be exchanged between

different applications. Often webservices work with a SOAP protocol, but REST doesn't do that and gives whatever

information is needed (or requested) by the consumer.

 4.3.1 How to create a REST environment in Grails

Since Groovy has got a nice webdriven brother called Grails the question risen on what it can do to realize a REST

environment. Luckily for those people there is Grails, because it is RESTful baby!

If one has looked into developing in Grails, they should have already seen the convenience of having the controller do

all the navigation through your website. This can come in handy when developing a RESTful service.

Let's say there is a user database in a Grails environment and the model and controller have already been generated.

The URI's would look something like:

• http://www.example.com/grailsproject/user/index

• http://www.example.com/grailsproject/user/1/view

But to make it work according to the REST principles the action doesn't have to be defned in the URI, but rather given

to the server through the HTTP headers.

Then URI's will start to look like:

• http://www.example.com/grailsproject/users/

• http://www.example.com/grailsproject/users/1/

Note the use of a plural, since we are not directly talking to the controller in Grails anymore.

On the last URI's the standard HTTP actions can be preformed. A simple table describes the actions in different

situations:

Resource GET PUT POST DELETE

Users root

http://example.com/
grailsproject/users/

List the members of
the collection. For
example list all the
cars for sale.

Not generally used.
Meaning defned as
replace the entire
collection with
another entire
collection.

Create a new entry in
the collection where
the ID is assigned
automatically by the
collection. The ID
created is typically
returned by this
operation.

Not generally Used.
Meaning defned as
delete the entire
collection.

Given user with 1

http://example.com/
grailsproject/users/1/

Retrieve the
addressed member of
the collection

Update the addressed
member of the
collection or create it
with a defned ID.

Not generally used.
Use the root for this.

Delete the addressed
member of the
collection.

How to create a REST environment in Grails 52 / 74

Getting Groovy in an SOA

 4.3.2 Getting it to work

The code example below shows a dull domain class that is created in Grails:

class User {
String firstName
String surName

}

And the following controller:

class UserController {

def index = {
//nothing here

}
}

First thing needed for a RESTful service is a way to control the different HTTP actions given to the server and a root URI

where a client can call to.

This is done in the UrlMapping fle found in the groovy/conf folder.

class UrlMappings {
static mappings = {

"/users/$id?" {
 controller = "user"
 action = [GET:"show", PUT:"update", DELETE:"delete", POST:"save"]

}
 }
}

This maps all the requests to users and a given id. With the controller property the required controller is defned. The

action defnes which actions to perform in the controller. In order to make this work the controller has to be adjusted.

The Grails application has to be restarted in order to make the mapping work.

The following actions are added to the controller:

def show = {}

def update = {}

def delete = {}

def save = {}

The code and what to do with the requests can be defned in the controller now.

There is also a minor thing changed in the controller. The domain-class User has to be included, which can be done with

the following code:

def user = new User()

To see it work an easy GSP page can be used. The user controller can do this.

The grails-app/views/user/ folder contains the views used by the UserController. An index fle is created (index.gsp).

In appendix 9.3 RESTful Webpage there is an example page on how to perform a simple HTTP actions on a Grails

server and is created for a Mozilla (Firefox) browser.

Getting it to work 53 / 74

Getting Groovy in an SOA

With this easy HTML page REST requests are send to the server and JavaScript alerts the output to your browser.

All there is left to do is adjust the controller to it handles the requests.

def show = {
render 'Showing ' + this.user.firstName + ' ' + this.user.surName

}

def update = {
render 'Going to update ' + params['firstName'] + " " + params['surName']

}

def delete = {
render 'Going to delete ' + this.user.firstName + ' ' + this.user.surName

}

def save = {
render 'Going to save ' + params['firstName'] + " " + params['surName']

}

Now requests are handled by the controller, working with the parameters given by the HTTP request.

The basics of the RESTful service (and the test page) are now ready.

Getting it to work 54 / 74

Getting Groovy in an SOA

 5 Conclusion

5
Conclusion

“ A conclusion is the place where
you got tired of thinking. “

 - Harold Fricklestein

Conclusion 55 / 74

Getting Groovy in an SOA

Groovy and Grails contain a lot of good things, but also some bad features. This chapter will our point of view on

various aspects of Groovy and Grails. This document has been based on the following question:

'What are the characteristics of Groovy (and Grails) and what impact do they have for an implementation in an SOA

within enterprise applications?'

 5.1 GDK

Groovy has been around for a while, and we think it is a good tool to use along Java. Its syntax is relatively simple yet

powerful, it is capable to incorporate Java, and has many interesting added features. The details of these features can be

found below:

Simple

Although the Groovy syntax is fairly simple and much more expressive than Java, the language itself isn't any less

powerful. Groovy's developers believe that simple tasks should be simple, and more complex tasks should be possible.

We think that that has been achieved, as our experience did indeed prove most tasks where achievable with less code

than would be needed in Java, and more often if not, simpler than Java.

Capable of using existing Java code

One of Groovy's major strengths is its capability to incorporate Java into its code. This allows for a very smooth

transition for a Java programmer to become a Groovy programmer, since the switch can made gradually and Java code

works fawlessly in groovy. This feature also allows Groovy to use any excising Java framework. We believe this feature

gives Groovy a head start over other new and emerging languages. A team working in a different language will be

writing all the required code when no framework is available, Groovy can beneft from the numerous Java frameworks

already created and thus save a development team quite a bit of work.

All of this is only possible because Groovy compiles to Java bytecode, and then runs this code on the same virtual

machine as ordinary Java code.

Added functionality

Groovy has a few characteristics that may not be unique for it as a language, but do show their usefulness in any Java

development environment, and not just a specifc SOA development. The details about these characteristics can be

found in earlier chapters and include feats like closures and the the Gstring. We believe that these tools, along with the

Groovy syntax, will create an initial hit on the productivity while the development team is learning and gaining

experience. After the tools are mastered enough, we believe the productivity of the team will return and then rise above

its previous level. Since we believe that any development team is interested in increasing its output, we think these

added feats will increase the attractiveness of Groovy.

Ready or not

Groovy is still a young language, and this is clear by the IDE support. Code completion is therefore not always

available, especially when the dynamic features of Groovy are used. This makes developing more of a choir than it

needs to be. But his also happens when other Dynamic Languages are used. Though it might not be a Groovy problem,

it can become a reason for not choosing for Groovy as the language to use. We are sure that in the future more features

will become available for IDEs.

Also, not all functionalities that might be needed are available as a specifc Groovy framework or extension. This can be

circumvented by using Java frameworks, but we believe this does decrease the overall beneft of using Groovy.

GDK 56 / 74

Getting Groovy in an SOA

 5.2 Groovy in a SOA

Contract frst

In a SOA environment it's important to use the contract frst approach. One of the reasons is that you want to make your

webservice compatible with other platforms. The other reason is that if you redeploy the webservice there might occur

some changes in the contract.

If you change your contract you have to notify all subscribers, and maybe they have to change their code too. This is

something you don't want to have in your enterprise application. What you want is a contract that is consistent and

used as long as possible.

API

While researching the GroovyWS module we couldn't fnd an API. And the examples on the Groovy homepage didn't

work. We had to download the source code and and generate the Javadoc with the help of some eclipse plugins.

GroovyWS is still in development, the version we used was version 0.4. This is another prove that GroovyWS isn't

mature enough. The problem with this is that some parts of Groovy are just not ready yet. It might be fxed in the future,

but you can never be sure.

Security

GroovyWS doesn't support any security except for one, and that is the Basic Authentication. So if you want to apply

security in your webservice in Groovy, which is often the case is, you can't do it because it isn't supported (yet).

You can only use Basic Authentication, and this security method isn't a WS-* standard.

Groovy and SOA

We researched the Groovy language, and its role in SOA-environments. We noticed that it's very easy to set up a

webservice and to consume one. Despite that its easy to set up a webservice and consume a webservice we concluded

that GroovyWS is not mature enough to use in a SOA environment.

 5.3 Grails

REST

The thing about REST in Groovy is that it has two kinds of solving the different kinds of implementation methods. Do

you want to implement it in Groovy itself with the use of RESTlets or use Grails to support you in the development

process?

REST implementation through Grails is widely used, and its support is good. Some people might say RESTlets work

better, which we can't confrm. RESTlets is the Java solution to creating a RESTful service, and has been modifed to

work in Groovy. The choice between RESTlet and Grails depends on what a developer needs for his application and

what environment he wishes to use. If the developer likes using the MVC pattern and handeling REST as CRUD, Grails

is recommended. Some developers might not like these enforcements, those had better stick with RESTlets.

Grails supports two Java frameworks, which will come in handy when creating dynamic websites; namely Hibernate

and Spring.

Grails provides UrlMapping and the binding of different actions to various HTTP request methods. This convenience

combined with the other functionality Grails provides makes this a powerful framework to create a RESTful service on.

In a short amount of time we got a RESTful service running. Reachable by any kind of client / browser. Combining the

power of Groovy and Grails to generate XML responses will lead to awesome results.

We were amazed by the features we could use to create services, everything just worked that way it should. That's why

we recommend using Grails for your next RESTful service instead of Java RESTlets.

Grails 57 / 74

Getting Groovy in an SOA

Work fast, create more productivity

Compared to a lot of developers using traditional Java web frameworks, Grails developers have a higher productivity.

This is caused by various factors;

The fact that XML confguration is not needed is a large beneft. XML is needed in order to make a lot of other

frameworks work (eg. Mule in Java). Grails will automatically confgure a lot of settings. That saves the developer a lot

of time.

When starting a Grails project, Grails will build an entire environment for you to start working in. This environment

contains support for the MVC and all the source folder are separated in a great way. IDE's like Eclipse will understand

the structure and you'll be able to integrate it easily into a project layout.

Model Persistence

If one creates a domain class, it is put in the model part of your application. Using Hibernate or just the dynamic

methods that you can perform on domainclass objects, the persistence with the database will be kept. This feature

provides us the possibility to easily maintain our data. No more writing lots of SQL!

An even easier way to do this is using scaffolding. Scaffolding enables you to create management pages for your data in

just a few steps. It sure works, and it's awesome to not create the pages yourself anymore. With a simple command in

your terminal the GSP pages can be generated and adjusted by the developers with ease.

This part makes Grails that much faster and convenient than a lot of other web frameworks. The generation of code lifts

a heavy load off our shoulders, it is the future.

Overall conclusion about Grails

Would we use Grails on our next web project? Depends on the size of the project and the time available we'd have to

put in the project. Because Grails is quite new to us and we had a short timespan, we didn't have time to create full

blown projects in Grails.

However, if given a little extra time, we're sure that Grails will improve the development process of the following

projects. Which is the effect of most of the web frameworks. There is always a learning curve when trying out / using a

new framework. But given the many possibilities Grails has to offer; we'd go for it! It will surely safe you time.

Grails 58 / 74

Getting Groovy in an SOA

 6 Recommendations

6
Recommendations

“ Question: How does a large
software project get to be one year
late? Answer: One day at a time! “

- Fred Brooks

Recommendations 59 / 74

Getting Groovy in an SOA

After our time spend researching Groovy and it's possibilities, we drew a few conclusions about what Groovy can and

can not do (yet). That's why we think that, on itself, Groovy is maturing quickly and can be used in active development.

However, if Groovy is used in a SOA, some features and functions are needed that Groovy alone cannot provide. For

any other language, this may prove to be a serious problem. However, since Groovy is able to use frameworks created

for Java, or Java itself if desired, these can be used to provide functionality that is lacking in Groovy. This makes Groovy

just as a valid choice as Java, and maybe even a better one, since Groovy adds lots of features that may speed up

development.

But just because Groovy is usable and, as we believe, ready to be used in development, doesn't mean it will be as well.

Especially since humans cling very strongly to their habits, and are often not very interested in change. We believe

however, that Groovy has enough benefts to make it worth the while to switch due to it unique nature and should be

recommended as a second language for many Java developers looking for a change.

Recommendations 60 / 74

Getting Groovy in an SOA

 7 Bibliography

7
Bibliography

“ You will fnd it a very good
practice always to verify your
references sir. “

- Martin Routh

Bibliography 61 / 74

Getting Groovy in an SOA

1. Van Buuren, Hans Hummel, Hans [and others] Wolters Noordhoff (2003) Onderzoek de basis.

ISBN 90 01 18259 3

2. LWSVO, Vereniging van onderwijsmediathecarissen (2005) Richtlijnen Bronvermelding. Consulted on 17

September 2008, http://lwsvo.nl/

3. Davis, Scott The Pragmatic Programmers (2008) Groovy Recipes – Greasing the Wheels of Java.

ISBN 0 9787392 9 9

4. König, Dierk [and others] Manning Publications Co. (2007) Groovy in Action.

ISBN 1 932394 84 2

5. Subramaniam, Venkat The Pragmatic Progammers (2008) Programming Groovy.

ISBN 1 934356 09 3

6. Rocher, Keith G. Apress (2006) The Defnitive Guide to Grails.

ISBN 1 59059 758 3

7. Judd, Christopher M. Nusairait, Faisal J. Apress (2008) Beginning Groovy and Grails.

ISBN 978 1 4302 1045 0

8. General Groovy information (Developers page). Consulted on 17 september 2008,

http://groovy.codehaus.org/

9. General Grails information (Developers page). Consulted on 17 september 2008,

http://grails.org/

10. Erl, T Prentice Hall PTR (2005) Service-Oriented Architecture: Concepts, Technology, and Design.

ISBN 0 13 185858 0

11. Bokor, L. (Java Magazine - Year of publication 7, September 2008, Number 3, Array Publications) Pages 59 till

62 Even wennen, maar dan wordt het: ‘Groovy, baby!’

12. Overdijk, M. (Java Magazine - Year of publication 7, October 2008, Number 4, Array Publications) Pages 44 till

48 Grails & Groovy: De zoektocht is voorbij

13. ZhenChun Huang, C. H. (2005) Groovy Service: On-Demand Web Service by Script Language.

14. Kimsal, M. Klein, D. [and others] GroovyMag for Groovy and Grails Developers Volume one, issue one,

November 2008

15. Kimsal, M. Klein, D. [and others] GroovyMag for Groovy and Grails Developers Volume one, issue two,

December 2008

16. Glover, A. (2005) Practically Groovy: Smooth operators. Consulted on 21 October 2008,

http://www.ibm.com/developerworks/java/library/j-pg10255.html

17. Krzywda, A. (17 December 2006) Building a GUI with Groovy. Consulted on 26 September 2008,

http://tinyurl.com/5hz6e3

18. Leach, J. (Syger 2007) Grails WebAlbum. Consulted on 5 December 2008,

http://www.syger.it/Tutorials/GrailsWebAlbum.html

19. Rudolph, J. (2007) InfoQ Getting Started with Grails.

ISBN 978-1-4303-0782-2

20. Almiray, A. (30 January 2008) MetaProgramming with Groovy. Consulted on 22 October 2008,

http://groovy.dzone.com/articles/metaprogramming-groovy-i

21. Fremantle, P. (4 December 2007) Paul Fremantle on Making SOA Groovy -- A TSS Video. Consulted on 5

November 2008, http://tinyurl.com/634o7j

22. Glover, A. (2005) Practically Groovy: Of MOPs and mini-languages. Consulted on 21 October 2008,

http://www.ibm.com/developerworks/java/library/j-pg09205/index.html

23. Apache CXF (Date unknown) Supplying a Confguration fle to CXF. Consulted on 3 December 2008,

http://cwiki.apache.org/CXF20DOC/confguration.html

24. Gardner, D. (13 June 2008) Apache CXF: All Grown Up. Consulted on 3 December 2008,

http://www.linuxinsider.com/story/63388.html.ONJava.com

25. Wielenga, G. (3 November 2007) Groovy Web Service. Consulted on 28 November 2008,

http://blogs.sun.com/geertjan/entry/groovy_web_service

26. General XFire information (Developers page). Consulted on 28 September 2008,

http://xfre.codehaus.org/

Bibliography 62 / 74

Getting Groovy in an SOA

27. Groovy (Programming Language) on Wikipedia. Consulted on 12 September 2008,

http://en.wikipedia.org/wiki/Groovy_(programming_language)

28. Strachan, G (29 August 2003) Groovy - the birth of a new dynamic language for the Java platform. Consulted on 12

September 2008, http://radio.weblogs.com/0112098/2003/08/29.html

29. Hammant, P [and others] (12 May 2007) Simple Java and .NET SOA interoperability. Consulted on 5 October

2008, http://www.infoq.com/articles/REST-INTEROP

30. Microsoft Corporation (7 November 2008) Windows API. Consulted on 19 December 2008.

http://msdn.microsoft.com/en-us/library/cc433218(VS.85).aspx

31. Yegge, S. (11 May 2008) Dynamic Languages Strike Back. Consulted on 6 December 2008.

http://tinyurl.com/6a6den

32. Rado, D. (28 April 2007) Early vs. Late Binding. Consulted on 6 December 2008.

http://word.mvps.org/fAQs/InterDev/EarlyvsLateBinding.htm

33. Galleon (3 March 2008) Groovy SOAP. Consulted on 12 November 2008.

http://docs.codehaus.org/display/GROOVY/Groovy+SOAP

34. Apache WSS4J (6 February 2008) Apache WSS4J. Consulted on 24 November 2008.

http://ws.apache.org/wss4j/

35. Grails (Framework) on Wikipedia. Consulted on 12 September 2008,

http://en.wikipedia.org/wiki/Grails_(Framework)

36. Scaffold (programming). Consulted on 25 September 2008,

http://en.wikipedia.org/wiki/Scaffold_(programming)

37. Dynamic programming language - Wikipedia, the free encyclopedia. (n.d.). . Retrieved January 8, 2009, from

http://en.wikipedia.org/wiki/Dynamic_programming_language

38. Groovy - ExpandoMetaClass. (n.d.). . Retrieved January 8, 2009, from

http://groovy.codehaus.org/ExpandoMetaClass

39. Technorabble: Collection of Dynamic Features for Static Languages. (n.d.). . Retrieved January 8, 2009, from

http://tech.norabble.com/2006/08/collection-of-dynamic-features-for.html

40. Bitwise Magazine:: Dynamic Languages - Who Needs Them? (n.d.). . Retrieved January 8, 2009, from http://

www.bitwisemag.com/2/Dynamic-Languages-Who-Needs-Them

41. Groovy - Using MockFor and StubFor. (n.d.). . Retrieved January 8, 2009, from

http://groovy.codehaus.org/Using+MockFor+and+StubFor.

Bibliography 63 / 74

Getting Groovy in an SOA

 8 Glossary

8
Glossary

“ Why is 'abbreviation' such a
long word? “

 - Author Unknown

Glossary 64 / 74

Getting Groovy in an SOA

• Annotations

An annotation, in the Java computer programming language, is a special form of syntactic metadata

that can be added to Java source code. Classes, methods, variables, parameters and packages may be

annotated. Unlike Javadoc tags, Java annotations are refective in that they are embedded in class fles

generated by the compiler and may be retained by the Java VM to be made retrievable at run-time.

Source: http://en.wikipedia.org/wiki/Java_annotation (19 December 2008)

• API Application programming interface

An application programming interface (API) is a set of functions, procedures, methods, classes or

protocols that an operating system, library or service provides to support requests made by computer

programs.

Source: http://en.wikipedia.org/wiki/API (18 December 2008)

• Closure

A Groovy closure is like a "code block" or a method pointer. It is a piece of code that is defned and

then executed at a later point.

Source: http://groovy.codehaus.org/Closures (19 December 2008)

• CRUD Create, read, update and delete

Create, read, update and delete (CRUD) are the four basic functions of persistent storage, a major

part of nearly all computer software. Sometimes CRUD is expanded with the words retrieve instead of read or

destroy instead of delete. It is also sometimes used to describe user interface conventions that facilitate

viewing, searching, and changing information; often using computer-based forms and reports.

Source: http://en.wikipedia.org/wiki/Create,_read,_update_and_delete (18 December 2008)

• CXF Apache CXF

Apache CXF is an open-source fully featured easy to use Web Services framework. It is the

combination of two projects: Celtix developed by IONA and XFire developed by Codehaus working together

at the Apache Software Foundation.

Source: http://en.wikipedia.org/wiki/CXF (18 December 2008)

• DOM Document Object Model

The Document Object Model (DOM) is a platform- and language-independent standard object

model for representing HTML or XML and related formats.

Source: http://en.wikipedia.org/wiki/DOM (18 December 2008)

• DSL Domain-specifc language

The term domain-specifc language (DSL) has become popular in recent years in software

development to indicate a programming language or specifcation language dedicated to a particular problem

domain, a particular problem representation technique, and/or a particular solution technique. The concept

isn't new—special-purpose programming languages and all kinds of modeling/specifcation languages have

always existed, but the term has become more popular due to the rise of domain-specifc modeling. Domain-

specifc languages are 4GL programming languages.

Source: http://en.wikipedia.org/wiki/Domain-specifc_language (18 December 2008)

• Dynamic Language

Dynamic programming language is a term used broadly in computer science to describe a class of

high-level programming languages that execute at runtime many common behaviors that other languages

might perform during compilation, if at all. These behaviors could include extension of the program, by

adding new code, by extending objects and defnitions, or by modifying the type system, all during program

execution. These behaviors can be emulated in nearly any language of suffcient complexity, but dynamic

languages provide direct tools to make use of them.

Source: http://en.wikipedia.org/wiki/Dynamic_programming_language (19 December 2008)

• Endpoint

In service-oriented architecture, an endpoint is the entry point to a service, a process, or a queue or

topic destination

Source: http://en.wikipedia.org/wiki/Endpoint (19 December 2008)

Glossary 65 / 74

Getting Groovy in an SOA

• ESB Enterprise Service Bus

In computing, an enterprise service bus (ESB) refers to a software architecture construct. This

construct is typically implemented by technologies found in a category of middleware infrastructure

products, usually based on recognized standards, which provide fundamental services for complex

architectures via an event-driven and standards-based messaging engine (the bus).

Source: http://en.wikipedia.org/wiki/Enterprise_service_bus (18 December 2008)

• Framework

A software framework is an abstraction in which common code providing generic functionality can

be selectively overridden or specialized by user code providing specifc functionality.

Source: http://en.wikipedia.org/wiki/Software_framework (19 December 2008)

• GDK Groovy Development Kit

The GDK is the Groovy version of the JDK (Java Development Kit).

• GORM Grails Object Relational Mapping

GORM is Grails' object relational mapping (ORM) implementation. Under the hood it uses

Hibernate 3 (an extremely popular and fexible open source ORM solution) but because of the dynamic nature

of Groovy, the fact that it supports both static and dynamic typing, and the convention of Grails there is less

confguration involved in creating Grails domain classes.

Source: http://grails.org/GORM (18 December 2008)

• Grails

Grails is an open source web application framework which leverages the Groovy programming

language (which is in turn based on the Java platform). It is intended to be a high-productivity framework by

following the "coding by convention" paradigm, providing a stand-alone development environment and

hiding much of the confguration detail from the developer.

Source: http://en.wikipedia.org/wiki/Grails_(framework) (19 December 2008)

• Groovy

Groovy is an object-oriented programming language for the Java Platform as an alternative to the

Java programming language. It is a dynamic language with features similar to those of Python, Ruby, Perl,

and Smalltalk. It can be used as a scripting language for the Java Platform.

Source: http://en.wikipedia.org/wiki/Groovy_(programming_language) (19 December 2008)

• GroovySOAP

SOAP is a lightweight protocol intended for exchanging structured information in a decentralized,

distributed environment. Groovy has a SOAP implementation based on XFire which allows you to create a

SOAP server and/or make calls to remote SOAP servers using Groovy.

Source: http://groovy.codehaus.org/Groovy+SOAP (19 December 2008)

• GroovyWS

GroovyWS is a library that allows rapid transparent integration with SOAP-based web services

from Groovy scripts and classes. It provides an auto-generated service proxy based on the WSDL of the

remote service and automatically generates class bindings for any complex types that are required.

GroovyWS is based on Apache CXF and runs on Java 5 or later.

Source: http://www.ohloh.net/p/10588 (19 December 2008)

Glossary 66 / 74

Getting Groovy in an SOA

• GUI Graphical user interface

A graphical user interface (GUI) is a type of user interface which allows people to interact with

electronic devices such as computers, hand-held devices (MP3 Players, Portable Media Players, Gaming

devices), household appliances and offce equipment. A GUI offers graphical icons, and visual indicators as

opposed to text-based interfaces, typed command labels or text navigation to fully represent the information

and actions available to a user. The actions are usually performed through direct manipulation of the

graphical elements.

Source: http://en.wikipedia.org/wiki/GUI (18 December 2008)

• GString

Strings that are declared inside double-quotes (i.e. either single double-quotes or triple double-

quotes for multi-line strings) can contain arbitrary expressions inside them as shown above using the $

{expression} syntax in a similar way to JSP EL, Velocity and Jexl. Any valid Groovy expression can be enclosed

in the ${...} including method calls etc. GStrings are defned the same way as normal Strings would be created

in Java.

Source: http://groovy.codehaus.org/Strings+and+GString (19 December 2008)

• HSQLDB Hyperthreaded Structured Query Language Database

HSQLDB (Hyperthreaded Structured Query Language Database) is a relational database

management system written in Java. It is based on Thomas Mueller's discontinued Hypersonic SQL Project.

Source: http://en.wikipedia.org/wiki/HSQLDB (18 December 2008)

• HTTP(S) Hypertext Transfer Protocol (over Secure Socket Layer)

Hypertext Transfer Protocol (HTTP) is a communications protocol. Its use for retrieving inter-linked

text documents (hypertext) led to the establishment of the World Wide Web.

Source: http://en.wikipedia.org/wiki/HTTP (18 December 2008)

• IDE Integrated development environment

An integrated development environment (IDE) also known as integrated design environment or

integrated debugging environment is a software application that provides comprehensive facilities to

computer programmers for software development.

Source: http://en.wikipedia.org/wiki/Integrated_development_environment (18 December 2008)

• JDBC Java Database Connectivity

Java Database Connectivity (JDBC) is an API for the Java programming language that defnes how a

client may access a database. It provides methods for querying and updating data in a database. JDBC is

oriented towards relational databases.

Source: http://en.wikipedia.org/wiki/JDBC (18 December 2008)

• JDK Java Development Kit

The Java Development Kit (JDK) is a Sun Microsystems product aimed at Java developers. Since the

introduction of Java, it has been by far the most widely used Java SDK.

Source: http://en.wikipedia.org/wiki/JDK (18 December 2008)

• JSP JavaServer Pages

JavaServer Pages (JSP) is a Java technology that allows software developers to dynamically generate

HTML, XML or other types of documents in response to a Web client request. The technology allows Java

code and certain pre-defned actions to be embedded into static content.

Source: http://en.wikipedia.org/wiki/JavaServer_Pages (18 December 2008)

• JVM Java Virtual Machine

A Java Virtual Machine (JVM) is a set of computer software programs and data structures which use

a virtual machine model for the execution of other computer programs and scripts. The model used by a JVM

accepts a form of computer intermediate language commonly referred to as Java bytecode. This language

conceptually represents the instruction set of a stack-oriented, capability architecture.

Source: http://en.wikipedia.org/wiki/JVM (18 December 2008)

Glossary 67 / 74

Getting Groovy in an SOA

• MetaClass

In object-oriented programming, a metaclass is a class whose instances are classes. Just as an

ordinary class defnes the behavior of certain objects, a metaclass defnes the behavior of certain classes and

their instances.

Source: http://en.wikipedia.org/wiki/Metaclass (19 December 2008)

• MOP Meta Object Protocol

A metaobject protocol (MOP) is an interpreter of the semantics of a program that is open and

extensible. Therefore, a MOP determines what a program means and what its behavior is, and it is extensible

in that a programmer (or metaprogrammer) can alter program behavior by extending parts of the MOP. The

MOP exposes some or all internal structure of the interpreter to the programmer. The MOP may manifest as a

set of classes and methods that allow a program to inspect the state of the supporting system and alter its

behaviour. MOPs are implemented as object-oriented programs where all objects are metaobjects.

Source: http://en.wikipedia.org/wiki/Metaobject_Protocol (18 December 2008)

• MVC Model-View-Controller

Model-view-controller (MVC) is an architectural pattern used in software engineering. Successful

use of the pattern isolates business logic from user interface considerations, resulting in an application where

it is easier to modify either the visual appearance of the application or the underlying business rules without

affecting the other. In MVC, the model represents the information (the data) of the application; the view

corresponds to elements of the user interface such as text, checkbox items, and so forth; and the controller

manages the communication of data and the business rules used to manipulate the data to and from the

model.

Source: http://en.wikipedia.org/wiki/Model-view-controller (18 December 2008)

• OO(P) Object Oriented Programming

Object-oriented programming (OOP) is a programming paradigm that uses "objects" and their

interactions to design applications and computer programs. Programming techniques may include features

such as encapsulation, modularity, polymorphism, and inheritance. It was not commonly used in mainstream

software application development until the early 1990s.

Source: http://en.wikipedia.org/wiki/Object-oriented_programming (18 December 2008)

• Operator overloading

Operator overloading (less commonly known as operator ad-hoc polymorphism) is a specifc case

of polymorphism in which some or all of operators like +, =, or == have different implementations depending

on the types of their arguments. Sometimes the overloadings are defned by the language; sometimes the

programmer can implement support for new types.

Source: http://en.wikipedia.org/wiki/Operator_overloading (19 December 2008)

• POGO Plain Old Groovy Object

Groovy version of a POJO (Plain Old Java Object).

• POJO Plain Old Java Object

POJO is an acronym for Plain Old Java Object. The name is used to emphasize that the object in

question is an ordinary Java Object, not a special object, and in particular not an Enterprise JavaBean

(especially before EJB 3).

Source: http://en.wikipedia.org/wiki/POJO (18 December 2008)

• REST Representational State Transfer

Representational state transfer (REST) is a style of software architecture for distributed hypermedia

systems such as the World Wide Web. As such, it is not strictly a method for building what are sometimes

called "web services." The terms “representational state transfer” and “REST” were introduced in 2000 in the

doctoral dissertation of Roy Fielding, one of the principal authors of the Hypertext Transfer Protocol (HTTP)

specifcation. The terms have since come into widespread use in the networking community.

Source: http://en.wikipedia.org/wiki/REST (18 December 2008)

Glossary 68 / 74

Getting Groovy in an SOA

• Scaffolding

Scaffolding is a meta-programming method of building database-backed software applications. It is

a technique supported by some model-view-controller frameworks, in which the programmer may write a

specifcation that describes how the application database may be used. The compiler uses this specifcation to

generate code that the application can use to create, read, update and delete database entries, effectively

treating the template as a "scaffold" on which to build a more powerful application.

Source: http://en.wikipedia.org/wiki/Scaffold_(programming) (19 December 2008)

• SDK Software development kit

A software development kit (SDK or "devkit") is typically a set of development tools that allows a

software engineer to create applications for a certain software package, software framework, hardware

platform, computer system, video game console, operating system, or similar platform.

Source: http://en.wikipedia.org/wiki/SDK (18 December 2008)

• SOA Service-Oriented Architecture

Service-oriented architecture (SOA) provides methods for systems development and integration

where systems group functionality around business processes and package these as interoperable services.

SOA also describes IT infrastructure which allows different applications to exchange data with one another as

they participate in business processes. Service-orientation aims at a loose coupling of services with operating

systems, programming languages and other technologies which underlie applications. SOA separates

functions into distinct units, or services, which developers make accessible over a network in order that users

can combine and reuse them in the production of business applications. These services communicate with

each other by passing data from one service to another, or by coordinating an activity between two or more

services.

Source: http://en.wikipedia.org/wiki/Service-Oriented_Architecture (18 December 2008)

• SOAP Simple Object Access Protocol

SOAP, originally defned as Simple Object Access Protocol, is a protocol specifcation for exchanging

structured information in the implementation of Web Services in computer networks. It relies on Extensible

Markup Language (XML) as its message format and usually relies on other Application Layer protocols, most

notably Remote Procedure Call (RPC) and HTTP for message negotiation and transmission. SOAP forms the

foundation layer of the web services protocol stack providing a basic messaging framework upon which

abstract layers can be built.

Source: http://en.wikipedia.org/wiki/SOAP_(protocol) (18 December 2008)

• SQL Structured Query Language

SQL (Structured Query Language) is a database computer language designed for the retrieval and

management of data in relational database management systems (RDBMS), database schema creation and

modifcation, and database object access control management.

Source: http://en.wikipedia.org/wiki/SQL (18 December 2008)

• StAX Streaming API for XML

Streaming API for XML (StAX) is an application programming interface (API) to read and write

XML documents in the Java programming language.

Source: http://en.wikipedia.org/wiki/StAX (18 December 2008)

• Tokens

A security token (or sometimes a hardware token, hard token, authentication token, cryptographic

token, or key fob) may be a physical device that an authorized user of computer services is given to ease

authentication. The term may also refer to software tokens.

Source: http://en.wikipedia.org/wiki/Security_token (19 December 2008)

Glossary 69 / 74

Getting Groovy in an SOA

• URL Uniform Resource Locator

Uniform Resource Locator (URL) is a type of Uniform Resource Identifer (URI) that specifes where

an identifed resource is available and the mechanism for retrieving it. In popular usage and in many

technical documents and verbal discussions it is often, imprecisely and confusingly, used as a synonym for

uniform resource identifer. The confusion in usage stems from historically different interpretations of the

semantics of the terms involved. In popular language a URL is also referred to as a Web address.

Source: http://en.wikipedia.org/wiki/URL (18 December 2008)

• Web Service

A 'Web service' (also Web Service) is defned by the W3C as "a software system designed to support

interoperable machine-to-machine interaction over a network". Web services are frequently just Web APIs that

can be accessed over a network, such as the Internet, and executed on a remote system hosting the requested

services.

Source: http://en.wikipedia.org/wiki/Webservice (19 December 2008)

• WS-* Web Service Specifcations

There are a variety of specifcations associated with web services. These specifcations are in

varying degrees of maturity and are maintained or supported by various standards bodies and entities.

Specifcations may complement, overlap, and compete with each other. Web service specifcations are

occasionally referred to collectively as "WS-*", though there is not a single managed set of specifcations that

this consistently refers to, nor a recognized owning body across them all. The reference term "WS-*" is more of

a general nod to the fact that many specifcations are named with "WS-" as their prefx.

Source: http://en.wikipedia.org/wiki/WS-* (18 December 2008)

• WSDL Web Services Description Language

The Web Services Description Language is an XML-based language that provides a model for

describing Web services.

Source: http://en.wikipedia.org/wiki/Web_Services_Description_Language (18 December 2008)

• XFire

Codehaus XFire is a Java framework for development and consumption of web services. Unlike

similar products, such as Apache Axis 1.x, XFire uses StAX for XML processing, resulting in better

performance. Apache Axis2 also uses StAX. Codehaus XFire is a java SOAP framework.

Source: http://en.wikipedia.org/wiki/Codehaus_XFire (19 December 2008)

• XML Extensible Markup Language

The Extensible Markup Language (XML) is a general-purpose specifcation for creating custom

markup languages. It is classifed as an extensible language, because it allows the user to defne the mark-up

elements. XML's purpose is to aid information systems in sharing structured data, especially via the Internet,

to encode documents, and to serialize data; in the last context, it compares with text-based serialization

languages such as JSON and YAML.

Source: http://en.wikipedia.org/wiki/XML (18 December 2008)

• XSD XML Schema

XML Schema, published as a W3C recommendation in May 2001, is one of several XML schema

languages. It was the frst separate schema language for XML to achieve Recommendation status by the W3C.

Like all XML schema languages, XML Schema can be used to express a schema: a set of rules to which an

XML document must conform in order to be considered 'valid' according to that schema. However, unlike

most other schema languages, XML Schema was also designed with the intent that determination of a

document's validity would produce a collection of information adhering to specifc data types. Such a post-

validation infoset can be useful in the development of XML document processing software, but the schema

language's dependence on specifc data types has provoked criticism.

Source: http://en.wikipedia.org/wiki/XSD (19 December 2008)

Glossary 70 / 74

Getting Groovy in an SOA

 9 Appendices

9
Appendices

Appendices 71 / 74

Getting Groovy in an SOA

 9.1 Contacts Schema

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="contacts">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="contact"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="contact">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="address" minOccurs="1" maxOccurs="1"/>
 <xs:element ref="phonenumbers" minOccurs="0" maxOccurs="1"/>
 <xs:element ref="emailaddresses" minOccurs="0" maxOccurs="1" />
 <xs:element ref="job" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="name" use="required" type="xs:string" />
 <xs:attribute name="birthday" use="required" type="xs:date"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="address">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="street" type="xs:string"></xs:element>
 <xs:element name="city" type="xs:string"></xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="emailaddresses">

<xs:complexType>
 <xs:sequence>
 <xs:element name="mailaddress" type="xs:string" minOccurs="1"

maxOccurs="unbounded"></xs:element>
 </xs:sequence>

 </xs:complexType>
 </xs:element>

 <xs:element name="phonenumbers">

<xs:complexType>
 <xs:sequence>
 <xs:element name="phonenumber" type="xs:string" minOccurs="1"

maxOccurs="unbounded"></xs:element>
 </xs:sequence>
</xs:complexType>

 </xs:element>

 <xs:element name="job">

<xs:complexType>
 <xs:attribute name="type" type="xs:string" use="required"></xs:attribute>
</xs:complexType>

 </xs:element>
</xs:schema>

 9.2 Address Controller

class AddressController {

 def index = { redirect(action:list,params:params) }

 // the delete, save and update actions only accept POST requests
 def allowedMethods = [delete:'POST', save:'POST', update:'POST']

 def list = {
 if(!params.max) params.max = 10
 [addressInstanceList: Address.list(params)]
 }

Address Controller 72 / 74

Getting Groovy in an SOA

def show = {
 def addressInstance = Address.get(params.id)

 if(!addressInstance) {
 flash.message = "Address not found with id ${params.id}"
 redirect(action:list)
 }
 else { return [addressInstance : addressInstance] }
 }

 def delete = {
 def addressInstance = Address.get(params.id)
 if(addressInstance) {
 addressInstance.delete()
 flash.message = "Address ${params.id} deleted"
 redirect(action:list)
 }
 else {
 flash.message = "Address not found with id ${params.id}"
 redirect(action:list)
 }
 }

 def edit = {
 def addressInstance = Address.get(params.id)

 if(!addressInstance) {
 flash.message = "Address not found with id ${params.id}"
 redirect(action:list)
 }
 else {
 return [addressInstance : addressInstance]
 }
 }

 def update = {
 def addressInstance = Address.get(params.id)
 if(addressInstance) {
 addressInstance.properties = params
 if(!addressInstance.hasErrors() && addressInstance.save()) {
 flash.message = "Address ${params.id} updated"
 redirect(action:show,id:addressInstance.id)
 }
 else {
 render(view:'edit',model:[addressInstance:addressInstance])
 }
 }
 else {
 flash.message = "Address not found with id ${params.id}"
 redirect(action:edit,id:params.id)
 }
 }

 def create = {
 def addressInstance = new Address()
 addressInstance.properties = params
 return ['addressInstance':addressInstance]
 }

 def save = {
 def addressInstance = new Address(params)
 if(!addressInstance.hasErrors() && addressInstance.save()) {
 flash.message = "Address ${addressInstance.id} created"
 redirect(action:show,id:addressInstance.id)
 }
 else {
 render(view:'create',model:[addressInstance:addressInstance])
 }
 }
}

Address Controller 73 / 74

Getting Groovy in an SOA

 9.3 RESTful Webpage

<html>
<head>

<title>Test RESTful service</title>

<style type='text/css'>
label {

width: 100px;
float: left;
display: block;

}

br {
clear: left;

}
</style>
<script type='text/javascript'>

function execute(type) {
var firstname = document.getElementById('firstname').value;
var surname = document.getElementById('surname').value;

var obj = document.getElementById('chooseMethod');
var method = obj.options[obj.selectedIndex].value;

xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange = function() {

if (this.readyState == 4) {
alert(xmlhttp.responseText);

}
}

if (type == "root") {
var uri = """../user/";

} else if (type == "id") {
var uri = """../user/1/";

}

xmlhttp.open(method, uri, true);
xmlhttp.setRequestHeader('Content-Type', 'application/x-www-

form-urlencoded');
xmlhttp.send("firstName=" + firstname + "&surName=" + surname);

return false;
}

</script>
</head>
<body>

<h1>REST tester</h1>
This is a simple REST test, so we can do stuff.

Choose method (GET default):
<select id='chooseMethod'>

<option value='GET' selected='selected'>GET</option>
<option value='PUT'>PUT</option>
<option value='DELETE'>DELETE</option>
<option value='POST'>POST</option>

</select>

<label>Firstname:</label>
<input type='text' name='firstName' id='firstname' value='${this.user.firstName}'

/><br style='clear: left' />

<label>Surname:</label>
<input type='text' name='surName' id='surname' value='${this.user.surName}' /><br

style='clear: left' />

<label> </label>
<input type='button' name='submitButton' onclick='execute("root")' value='send

request to root' />
<input type='button' name='submitButton' onclick='execute("id")' value='send

request to member 1' />

</body>
</html>

RESTful Webpage 74 / 74

	 1 Introduction
	 1.1 Objective
	 1.2 Research Questions

	 2 Groovy
	 2.1 What are the characteristics of Groovy?
	 2.1.1 Dynamic Language
	 2.1.2 Groovy Development Kit
	 2.1.3 Imports
	 2.1.4 Semicolons
	 2.1.5 Data type declaration
	 2.1.6 Groovy String
	 2.1.7 Embedded quotes
	 2.1.8 Heredocs
	 2.1.9 Collections
	 2.1.10 Declaring Classes
	 2.1.11 Return Statements
	 2.1.12 Checking NULL value
	 2.1.13 Boolean
	 2.1.14 Operator overloading
	 2.1.15 Parentheses
	 2.1.16 Closures and blocks
	 2.1.17 Loops
	 2.1.18 Exception handling
	 2.1.19 Interfaces
	 2.1.20 Annotations
	 2.1.21 Testing
	 2.1.22 Working with databases

	 2.2 Meta Object Protocol
	 2.2.1 Interceptable
	 2.2.2 Categories
	 2.2.3 Expando

	 3 Webservices in Groovy
	 3.1 Creating, manipulating, validating and parsing XML
	 3.2 SOAP-based webservices
	 3.2.1 GroovySOAP
	 3.2.2 GroovyWS

	 3.3 RESTful webservices
	 3.4 Securing webservices

	 4 Grails
	 4.1 Scaffolding
	 4.1.1 What is Scaffolding?
	 4.1.2 Scaffolding in Grails

	 4.2 GORM
	 4.2.1 Using GORM with legacy database schemas

	 4.3 REST in Grails
	 4.3.1 How to create a REST environment in Grails
	 4.3.2 Getting it to work

	 5 Conclusion
	 5.1 GDK
	 5.2 Groovy in a SOA
	 5.3 Grails

	 6 Recommendations
	 7 Bibliography
	 8 Glossary
	 9 Appendices
	 9.1 Contacts Schema
	 9.2 Address Controller
	 9.3 RESTful Webpage

